-
Godwin Faber posted an update 1 month, 3 weeks ago
The Al70Fe12.5V12.5Ni5, Al70Fe12.5V12.5Zr5 and Al70Fe12.5V12.5Nb5 alloys were prepared via mechanical alloying. The influence of Zr, Nb or Ni addition on the glass-forming ability of Al-Fe-V amorphous alloys have been investigated. The structure of Al70Fe12.5V12.5Ni5 was amorphous and Al70Fe12.5V12.5Zr5 was not completely amorphous by transmission electron microscopy, selected area electron diffraction and differential scanning calorimetry. Different criteria were used to evaluate the influence of the addition of alloy elements on the Glass-forming ability. The Al70Fe12.5V12.5Ni5 amorphous alloys exhibits higher glass-forming ability and activation energies of crystallization. Comparison of the effective atomic size ratio and mixture enthalpy on the glass-forming ability of these amorphous alloys demonstrates that the effective atomic size ratio value becomes more significant than the values of mixture enthalpy.The primary objective of this research was to develop a finite element model specifically designed for electron beam additive manufacturing (EBAM) of Ti-6Al-4V to understand metallurgical and mechanical aspects of the process. Zamaporvint ic50 Multiple single-layer and 10-layer build Ti-6Al-4V samples were fabricated to validate the simulation results and ensure the reliability of the developed model. Thin wall plates of 3 mm thickness were used as substrates. Thermocouple measurements were recorded to validate the simulated thermal cycles. Predicted and measured temperatures, residual stresses, and distortion profiles showed that the model is quite reliable. The thermal predictions of the model, when validated experimentally, gave a low average error of 3.7%. The model proved to be extremely successful for predicting the cooling rates, grain morphology, and the microstructure. The maximum deviations observed in the mechanical predictions of the model were as low as 100 MPa in residual stresses and 0.05 mm in distortion. Tensile residual stresses were observed in the deposit and the heat-affected zone, while compressive stresses were observed in the core of the substrate. The highest tensile residual stress observed in the deposit was approximately 1.0 σys (yield strength). The highest distortion on the substrate was approximately 0.2 mm.Intensive care patients experience anxiety, pain, uncertainty, and total dependency. In general, it is important to develop trust between the healthcare professionals (HCPs), patients, and their family. Trust building in the ICU setting is challenging because of the time sensitivity of decision making and the dependency of patients on health care professionals. The objectives of this study are the development of a trust framework and then to use this framework in a case study in the intensive care. In three steps we developed a comprehensive trust framework from the literature concerning trust. First, we identified the elements of trust. Second, we adapted and integrated the dimensions to six concepts to construct the trust framework. Third, these concepts are incorporated into a comprehensive trust framework. In a case study we explored the facilitators and barriers within this framework in eight semi-open interviews with healthcare professionals and eight patients or partners. Trust was first explored inductively and then deductively. We showed that HCPs, patients, and family have largely the same perspective regarding the facilitators of trust, in which communication emerged as the most important one. Other facilitators are maintaining an open feedback culture for HCPs and being aware of patients’ physical and informational privacy. Patients want to be approached as an individual with individual needs. Dishonesty and differences in values and norms were the most important barriers. To contribute to a positive perception of health delivery and to avoid conflicts between HCP and patients or their family we formulated five practical recommendations.Background Well-annotated, high-quality biorepositories provide a valuable platform to support translational research. However, most biorepositories have poor representation of minority groups, limiting the ability to address health disparities. Methods We describe the establishment of the Florida Pancreas Collaborative (FPC), the first state-wide prospective cohort study and biorepository designed to address the higher burden of pancreatic cancer (PaCa) in African Americans (AA) compared to Non-Hispanic Whites (NHW) and Hispanic/Latinx (H/L). We provide an overview of stakeholders; study eligibility and design; recruitment strategies; standard operating procedures to collect, process, store, and transfer biospecimens, medical images, and data; our cloud-based data management platform; and progress regarding recruitment and biobanking. Results The FPC consists of multidisciplinary teams from fifteen Florida medical institutions. From March 2019 through August 2020, 350 patients were assessed for eligibility, 323 met inclusion/exclusion criteria, and 305 (94%) enrolled, including 228 NHW, 30 AA, and 47 H/L, with 94%, 100%, and 94% participation rates, respectively. A high percentage of participants have donated blood (87%), pancreatic tumor tissue (41%), computed tomography scans (76%), and questionnaires (62%). Conclusions This biorepository addresses a critical gap in PaCa research and has potential to advance translational studies intended to minimize disparities and reduce PaCa-related morbidity and mortality.We investigated the influence of different dietary formulation of n-3 polyunsaturated fatty acids (PUFA) on rat tissue fatty acid (FA) incorporation and consequent modulation of their bioactive metabolite N-acylethanolamines (NAE). For 10 weeks, rats were fed diets with 12% of fat from milk + 4% soybean oil and 4% of oils with different n-3 PUFA species soybean oil as control, linseed oil rich in α-linolenic (ALA), Buglossoides arvensis oil rich in ALA and stearidonic acid (SDA), fish oil rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), Nannochloropsis microalga oil rich in EPA or Schizochytrium microalga oil rich in DHA. FA and NAE profiles were determined in plasma, liver, brain and adipose tissues. Different dietary n-3 PUFA distinctively influenced tissue FA profiles and consequently NAE tissue concentrations. Interestingly, in visceral adipose tissue the levels of N-arachidonoylethanolamide (AEA) and N-docosahexaenoylethanolamide (DHEA), NAE derived from arachidonic acid (AA) and DHA, respectively, significantly correlated with NAE in plasma, and circulating DHEA levels were also correlated with those in liver and brain.