-
Self Buch posted an update 1 month, 2 weeks ago
diographic screening in combination with secondary antibiotic prophylaxis in children with evidence of latent rheumatic heart disease may be an effective strategy to reduce the prevalence of definite or borderline rheumatic heart disease in endemic regions.
ClinicalTrials.gov Identifier NCT01550068.
ClinicalTrials.gov Identifier NCT01550068.
Risk profiles for premature coronary heart disease (CHD) are unclear.
To examine baseline risk profiles for incident CHD in women by age at onset.
A prospective cohort of US female health professionals participating in the Women’s Health Study was conducted; median follow-up was 21.4 years. Participants included 28 024 women aged 45 years or older without known cardiovascular disease. Baseline profiles were obtained from April 30, 1993, to January 24, 1996, and analyses were conducted from October 1, 2017, to October 1, 2020.
More than 50 clinical, lipid, inflammatory, and metabolic risk factors and biomarkers.
Four age groups were examined (<55, 55 to <65, 65 to <75, and ≥75 years) for CHD onset, and adjusted hazard ratios (aHRs) were calculated using stratified Cox proportional hazard regression models with age as the time scale and adjusting for clinical factors. Women contributed to different age groups over time.
Of the clinical factors in the women, diabetes had the highest aHR for I, 1.36-2.04), apolipoprotein B (aHR, 1.89; 95% CI, 1.52-2.35), triglycerides (aHR, 2.14; 95% CI, 1.72-2.67), and inflammatory biomarkers (1.2- to 1.8-fold)-all attenuating with age. Some biomarkers had similar CHD age associations (eg, physical inactivity, lipoprotein[a], total high-density lipoprotein particles), while a few had no association with CHD onset at any age. Most risk factors and biomarkers had associations that attenuated with increasing age at onset.
In this cohort study, diabetes and insulin resistance, in addition to hypertension, obesity, and smoking, appeared to be the strongest risk factors for premature onset of CHD. Most risk factors had attenuated relative rates at older ages.
In this cohort study, diabetes and insulin resistance, in addition to hypertension, obesity, and smoking, appeared to be the strongest risk factors for premature onset of CHD. Most risk factors had attenuated relative rates at older ages.In 3D nematic liquid crystals, disclination lines have a range of geometric structures. Locally, they may resemble +1/2 or -1/2 defects in 2D nematic phases, or they may have 3D twist. Here, we analyze the structure in terms of the director deformation modes around the disclination, as well as the nematic order tensor inside the disclination core. Based on this analysis, we construct a vector to represent the orientation of the disclination, as well as tensors to represent higher-order structure. We apply this method to simulations of a 3D disclination arch, and determine how the structure changes along the contour length. We then use this geometric analysis to investigate three types of forces acting on a disclination Peach-Koehler forces due to external stress, interaction forces between disclination lines, and active forces. These results apply to the motion of disclination lines in both conventional and active liquid crystals.A light-controlled artificial synapse, which mimics the human brain has been considered to be one of the ideal candidates for the fundamental physical architecture of a neuromorphic computing system owing to the possible abilities of high bandwidth and low power calculation. However, the low photosensitivity of synapse devices can affect the accuracy of recognition and classification in neuromorphic computing tasks. In this work, a planar light-controlled artificial synapse having high photosensitivity (Ion/Ioff > 1000) with a high photocurrent and a low dark current is realized based on a ZnO thin film grown by radiofrequency sputtering. The synaptic functions of the human brain such as sensory memory, short-term memory, long-term memory, duration-time-dependent-plasticity, light-intensity-dependent-plasticity, learning-experience behavior, neural facilitation, and spike-timing-dependent plasticity are successfully emulated using persistent photoconductivity characteristic of a ZnO thin film. Furthermore, the high classification accuracy of 90%, 92%, and 86% after 40 epochs for file type datasets, small digits, and large digit is realized with a three-layer neural network based on backpropagation where the numerical weights in the network layer are mapped directly to the conductance states of the experimental synapse devices. Finally, characterization and analysis reveal that oxygen vacancy defects and chemisorbed oxygen on the surface of the ZnO film are the main factors that determine the performance of the device.Ring-opening transformations of donor-acceptor cyclopropanes (DAC) with carbon-centered nucleophiles is a simple, straight-forward approach to 1,3-bifunctional compounds that has witnessed remarkable progress over the past several years. To date, different reactivity patterns of DACs have been successfully exploited in racemic/stereoselective syntheses of various acyclic compounds or carbocycles with an impressive structural diversity. MPTP in vitro The thriving strategies have been successfully utilized in multistep synthesis of complex target molecules. Herein, the recent advances (2015-present) in the ring-opening of DAC involving electron rich arenes and indoles, active methylene compounds, various dipolarophiles, organoborates/boronates, vinyl ethers etc. following Friedel-Crafts alkylation, annulation/formal cycloaddition reaction, organocatalytic reaction, Nazarov cyclisation etc. are presented.Zigzag-edged graphene nanoribbons (ZGNRs) have important applications in spintronics and spin caloritronics. While in the preparation of a ZGNR, defects like the graphene nanobubbles often appear, which may affect the physical properties of the ZGNR. In this paper, we studied the transport properties of a defected ZGNR with a graphene nanobubble by performing first-principles quantum transport calculations. The results show that when the nanobubble is intact and locates at the centre, the spin polarization and magnetoresistance tend to drop off in the low bias voltage cases, compared to the ideal ZGNR. While when the nanobubble is split and locates at the edge, all the transport properties are significantly affected and altered, such as the spin polarization, the giant magnetoresistance effect and the spin Seebeck effect. Meanwhile, some new results are obtained from the device, including the negative differential resistance effect and the pure thermal-induced spin-current.