• Wood Eriksson posted an update 1 month, 2 weeks ago

    The rapid and efficient phagocytic clearance of apoptotic cells, termed efferocytosis, is a critical mechanism in the maintenance of tissue homeostasis. Removal of apoptotic cells through efferocytosis prevents secondary necrosis and the resultant inflammation caused by the release of intracellular contents. Curzerene The importance of efferocytosis in homeostasis is underscored by the large number of inflammatory and autoimmune disorders, including atherosclerosis and systemic lupus erythematosus, that are characterized by defective apoptotic cell clearance. Although mechanistically similar to the phagocytic clearance of pathogens, efferocytosis differs from phagocytosis in that it is immunologically silent and induces a tissue repair response. Efferocytes face unique challenges resulting from the internalization of apoptotic cells, including degradation of the apoptotic cell, dealing with the extra metabolic load imposed by the processing of apoptotic cell contents, and the coordination of an anti-inflammatory, pro-tissue repair response. This review will discuss recent advances in our understanding of the cellular response to apoptotic cell uptake, including trafficking of apoptotic cell cargo and antigen presentation, signaling and transcriptional events initiated by efferocytosis, the coordination of an anti-inflammatory response and tissue repair, unique cellular metabolic responses and the role of efferocytosis in host defense. A better understanding of how efferocytic cells respond to apoptotic cell uptake will be critical in unraveling the complex connections between apoptotic cell removal and inflammation resolution and maintenance of tissue homeostasis.Osteosarcoma (OSA) is the most common bone malignancy and displays high heterogeneity of molecular phenotypes. This study aimed to characterize the molecular features of OSA by developing a classification system based on the gene expression profile of the tumor microenvironment. Integrative analysis was performed using specimens and clinical information for OSA patients from the TARGET program. Using a matrix factorization method, we identified two molecular subtypes significantly associated with prognosis, S1 (infiltration type) and S2 (escape type). Both subtypes displayed unique features of functional significance features and cellular infiltration characteristics. We determined that immune and stromal infiltrates were abundant in subtype S1 compare to that in subtype S2. Furthermore, higher expression of immune checkpoint PDCD1LG2 and HAVCR2 was associated with improved prognosis, while a preferable chemotherapeutic response was associated with FAP-positive fibroblasts in subtype S1. Alternatively, subtype S2 is characterized by a lack of effective cytotoxic responses and loss of major histocompatibility complex class I molecule expression. A gene classifier was ultimately generated to enable OSA classification and the results were confirmed using the GSE21257 validation set. Correlations between the percentage of fibroblasts and/or fibrosis and CD8+ cells, and their clinical responses to chemotherapy were assessed and verified based on 47 OSA primary tumors. This study established a new OSA classification system for stratifying OSA patient risk, thereby further defining the genetic diversity of OSA and allowing for improved efficiency of personalized therapy.The spread of infectious diseases is rampant. The emergence of new infections, the irrational use of antibiotics in medicine and their widespread use in agriculture contribute to the emergence of microorganisms that are resistant to antimicrobial drugs. By 2050, mortality from antibiotic-resistant strains of bacteria is projected to increase up to 10 million people per year, which will exceed mortality from cancer. Mutations in bacteria and viruses are occurring faster than new drugs and vaccines are being introduced to the market. In search of effective protection against infections, new strategies and approaches are being developed, one of which is the use of innate immunity activators in combination with etiotropic chemotherapy drugs. Muramyl peptides, which are part of peptidoglycan of cell walls of all known bacteria, regularly formed in the body during the breakdown of microflora and considered to be natural regulators of immunity. Their interaction with intracellular receptors launches a sequence of pric and oncological diseases, and in the composition of vaccines.Porcine epidemic diarrhea virus (PEDV) is the major pathogen that causes diarrhea and high mortality in newborn piglets with devastating impact to the pig industry. Recombination and mutation are the main driving forces of viral evolution and genetic diversity of PEDV. In 2016, an outbreak of diarrhea in piglets occurred in an intensive pig farm in Central China. A novel PEDV isolate (called HNAY) was successfully isolated from clinical samples. Sequence analysis and alignment showed that HNAY possessed 21-nucleotide (nt) insertion in its S1 gene, which has never been reported in other PEDV isolates. Moreover, the sequence of the insertion was identical with the sequence fragment in PEDV N gene. Notably, the HNAY strain exhibited two unique mutations (T500A and L521Y) in the neutralizing epitopes of the S1 protein that were different from those of other PEDV variant strains and CV777-based vaccine strains. Additionally, PEDV HNAY might be derived from a natural recombination between two Chinese variant PEDV strains. Animal experiments demonstrated that HNAY displayed higher pathogenicity compared with two other clinical isolates. This study lays the foundation for better understanding of the genetic evolution and molecular pathogenesis of PEDV.Artisanal cheeses made with raw milk are highly appreciated products in Brazil. Most of these cheeses are produced in small facilities across different production regions in the country, some of which have been granted a protected designation of origin and are award winners. The most prominent state that manufactures these products is Minas Gerais (MG), but production is also gaining strength in other Brazilian states. The major challenge faced by artisanal cheese production is related to microbial risks associated with foodborne pathogens when the quality of the raw milk is unsatisfactory. Regulations created for the dairy industry are constantly been revised and adapted, considering the small-scale production of Brazilian artisanal cheeses, in order to guarantee safety at all steps of cheese production and commercialization. This text presents a summary of the huge diversity of artisanal cheeses produced in the country, grouped by geographical regions, and reviews the current challenges faced by producers and government considering the safety of these cheeses.