• Lamb Weber posted an update 1 month, 3 weeks ago

    Finally, researchers’ interest in tumor microenvironment, particularly tumor-infiltrating lymphocytes, and the major role that signaling pathways, such as the PI3K/AKT/mTOR pathway, play in the development of resistance to anti-HER2 therapies have spurred the development of clinical trials evaluating innovative combinations of anti-HER2 with PD-1/PDL-1, CDK4/6 and PI3K inhibitors. However, several questions remain unresolved, like the optimal management of HER2-positive/HR-positive advanced breast cancer and the identification of predictive biomarkers to better define populations that can benefit most from these new therapies and approaches.Transcription factors encoded by Homeobox (HOX) genes play numerous key functions during early embryonic development and differentiation. Multiple reports have shown that mis-regulation of HOX gene expression plays key roles in the development of cancers. Their expression levels in cancers tend to differ based on tissue and tumor type. Here, we performed a comprehensive analysis comparing HOX gene expression in different cancer types, obtained from The Cancer Genome Atlas (TCGA), with matched healthy tissues, obtained from Genotype-Tissue Expression (GTEx). We identified and quantified differential expression patterns that confirmed previously identified expression changes and highlighted new differential expression signatures. We discovered differential expression patterns that are in line with patient survival data. This comprehensive and quantitative analysis provides a global picture of HOX genes’ differential expression patterns in different cancer types.Coagulase-negative staphylococci (CNS) make up a diverse bacterial group, appearing in a myriad of ecosystems. To unravel the composition of staphylococcal communities in these microbial ecosystems, a reliable species-level identification is crucial. The present study aimed to design a primer set for high-throughput amplicon sequencing, amplifying a region of the tuf gene with enough discriminatory power to distinguish different CNS species. Based on 2566 tuf gene sequences present in the public European Nucleotide Archive database and saved as a custom tuf gene database in-house, three different primer sets were designed, which were able to amplify a specific region of the tuf gene for 36 strains of 18 different CNS species. In silico analysis revealed that species-level identification of closely related species was only reliable if a 100% identity cut-off was applied for matches between the amplicon sequence variants and the custom tuf gene database. From the three primer sets designed, one set (Tuf387/765) outperformed the two other primer sets for studying Staphylococcus-rich microbial communities using amplicon sequencing, as it resulted in no false positives and precise species-level identification. The method developed offers interesting potential for a rapid and robust analysis of complex staphylococcal communities in a variety of microbial ecosystems.Antibiotic resistance genes (ARGs) including those from the blaCTX-M family and mcr-1 that encode resistance to extended spectrum β-lactams and colistin, respectively, have been linked with IncHI2 plasmids isolated from swine production facilities globally but not in IncHI2 plasmids from Australia. Here we describe the first complete sequence of a multiple drug resistance Australian IncHI2-ST4 plasmid, pTZ41_1P, from a commensal E. coli from a healthy piglet. AZD8186 pTZ41_1P carries genes conferring resistance to heavy-metals (copper, silver, tellurium and arsenic), β-lactams, aminoglycosides and sulphonamides. The ARGs reside within a complex resistance locus (CRL) that shows considerable sequence identity to a CRL in pSDE_SvHI2, an IncHI2ST3 plasmid from an enterotoxigenic E. coli with serotype O157H19 of porcine origin that caused substantial losses to swine production operations in Australia in 2007. pTZ41_1P is closely related to IncHI2 plasmids found in E. coli and Salmonella enterica from porcine, avian and human sources in Europe and China but it does not carry genes encoding resistance to clinically-important antibiotics. We identified regions of IncHI2 plasmids that contribute to the genetic plasticity of this group of plasmids and highlight how they may readily acquire new resistance gene cargo. Genomic surveillance should be improved to monitor IncHI2 plasmids.Over 700 plant diseases identified as vector-borne negatively impact plant health and food security globally. The pest control of vector-borne diseases in agricultural settings is in urgent need of more effective tools. Ongoing research in genetics, molecular biology, physiology, and vector behavior has begun to unravel new insights into the transmission of phytopathogens by their insect vectors. However, the intricate mechanisms involved in phytopathogen transmission for certain pathosystems warrant further investigation. In this review, we propose the corn stunt pathosystem (Zea mays-Spiroplasma kunkelii-Dalbulus maidis) as an ideal model for dissecting the molecular determinants and mechanisms underpinning the persistent transmission of a mollicute by its specialist insect vector to an economically important monocotyledonous crop. Corn stunt is the most important disease of corn in the Americas and the Caribbean, where it causes the severe stunting of corn plants and can result in up to 100% yield loss. A comprehensive study of the corn stunt disease system will pave the way for the discovery of novel molecular targets for genetic pest control targeting either the insect vector or the phytopathogen.Depression and obesity are very common pathologies. Both cause significant problems of both morbidity and mortality and have decisive impacts not only on the health and well-being of patients, but also on socioeconomic and health expenditure aspects. Many epidemiological studies, clinical studies and meta-analyses support the association between mood disorders and obesity in relationships to different conditions such as the severity of depression, the severity of obesity, gender, socioeconomic status, genetic susceptibility, environmental influences and adverse experiences of childhood. Currently, both depression and obesity are considered pathologies with a high-inflammatory impact; it is believed that several overlapping factors, such as the activation of the cortico-adrenal axis, the exaggerated and prolonged response of the innate immune system and proinflammatory cytokines to stress factors and pathogens-as well as alterations of the intestinal microbiota which promote intestinal permeability-can favor the expression of an increasingly proinflammatory phenotype that can be considered a key and common phenomenon between these two widespread pathologies.