• Dowd Iqbal posted an update 1 month, 2 weeks ago

    Speed judgment is a vital component of autonomous driving perception systems. Automobile drivers were able to evaluate their speed as a result of their driving experience. However, driverless automobiles cannot autonomously evaluate their speed suitability through external environmental factors such as the surrounding conditions and traffic flows. This study introduced the parameter of overtaking frequency (OTF) based on the state of the traffic flow on both sides of the lane to reflect the difference between the speed of a driverless automobile and its surrounding traffic to solve the above problem. In addition, a speed evaluation algorithm was proposed based on the long short-term memory (LSTM) model. To train the LSTM model, we extracted OTF as the first observation variable, and the characteristic parameters of the vehicle’s longitudinal motion and the comparison parameters with the leading vehicle were used as the second observation variables. The algorithm judged the velocity using a hierarchical method. We conducted a road test by using real vehicles and the algorithms verified the data, which showed the accuracy rate of the model is 93%. As a result, OTF is introduced as one of the observed variables that can support the accuracy of the algorithm used to judge speed.To investigate into the T-2 and HT-2 toxin occurrence, 240 samples of unprocessed cereals (maize, wheat, barley, and oats) were sampled from different fields located in three Croatian regions during 2017-2018. In all samples, sum concentrations of T-2/HT-2 toxin were determined using the ELISA method, while the LC-MS/MS was used as a confirmatory method for both mycotoxins in positive samples (>LOD) and the establishment of T-2 over HT-2 toxin ratios. The results showed oats to be the most contaminated cereal, with T-2/HT-2 toxins detected in 70.0% of samples, followed by barley (40.9%), maize (26.8%) and wheat (19.2%), with the mean T-2/HT-2 ratio ranging from 12.7 in maize to 14.4 in oats. Sum T-2/HT-2 concentrations in two maize samples were higher than the indicative level recommended by the European Commission, necessitating subsequent investigations into the conditions under which these poorly investigated mycotoxins are produced. Statistically significantly (p less then 0.05) higher concentrations of T-2/HT-2 toxin were determined in oats throughout study regions as compared to those found in wheat, but not maize and barley, while the concentrations of these mycotoxins were related to the regional weather in Croatia.Candida parapsilosis is a frequent cause of fungal bloodstream infections, especially in critically ill neonates or immunocompromised patients. Due to the formation of biofilms, the use of indwelling catheters and other medical devices increases the risk of infection and complicates treatment, as cells embedded in biofilms display reduced drug susceptibility. Therefore, biofilm formation may be a significant clinical parameter, guiding downstream therapeutic choices. Here, we phenotypically characterized 120 selected isolates out of a prospective collection of 215 clinical C. parapsilosis isolates, determining biofilm formation, major emerging colony morphotype, and antifungal drug susceptibility of the isolates and their biofilms. In our isolate set, increased biofilm formation capacity was independent of body site of isolation and not predictable using standard or modified European Committee on Antimicrobial Susceptibility Testing (EUCAST) drug susceptibility testing protocols. In contrast, biofilm formation was strongly correlated with the appearance of non-smooth colony morphotypes and invasiveness into agar plates. Our data suggest that the observation of non-smooth colony morphotypes in cultures of C. parapsilosis may help as an indicator to consider the initiation of anti-biofilm-active therapy, such as the switch from azole- to echinocandin- or polyene-based strategies, especially in case of infections by potent biofilm-forming strains.We report on a polymer-waveguide-based temperature sensing system relying on switchable molecular complexes. The polymer waveguide cladding is fabricated using a maskless lithographic optical system and replicated onto polymer material (i.e., PMMA) using a hot embossing device. An iron-amino-triazole molecular complex material (i.e., [Fe(Htrz)2.85(NH2-trz)0.15](ClO4)2) is used to sense changes in ambient temperature. For this purpose, the core of the waveguide is filled with a mixture of core material (NOA68), and the molecular complex using doctor blading and UV curing is applied for solidification. NSC 641530 The absorption spectrum of the molecular complex in the UV/VIS light range features two prominent absorption bands in the low-spin state. As temperature approaches room temperature, a spin-crossover transition occurs, and the molecular complex changes its color (i.e. spectral properties) from violet-pink to white. The measurement of the optical power transmitted through the waveguide as a function of temperature exhibits a memory effect with a hysteresis width of approx. 12 °C and sensitivity of 0.08 mW/°C. This enables optical rather than electronic temperature detection in environments where electromagnetic interference might influence the measurements.Spatial neighboring analysis is an indispensable part of geo-raster spatial analysis. In the big data era, high-resolution raster data offer us abundant and valuable information, and also bring enormous computational challenges to the existing focal statistics algorithms. Simply employing the in-memory computing framework Spark to serve such applications might incur performance issues due to its lack of native support for spatial data. In this article, we present a Spark-based parallel computing approach for the focal algorithms of neighboring analysis. This approach implements efficient manipulation of large amounts of terrain data through three steps (1) partitioning a raster digital elevation model (DEM) file into multiple square tile files by adopting a tile-based multifile storing strategy suitable for the Hadoop Distributed File System (HDFS), (2) performing the quintessential slope algorithm on these tile files using a dynamic calculation window (DCW) computing strategy, and (3) writing back and merging the calculation results into a whole raster file.