• Lockhart McQueen posted an update 1 month, 2 weeks ago

    Although Streptomyces mobaraense transglutaminase (MTG) has been extensively applied to enhance the functional characteristics of soy protein isolate (SPI) through cross-linking, various transglutaminases (TGs) in nature may provide more choice in the food industry. Previous research reported that TG derived from Bacillus subtilis (BTG) exhibited better pH stability and thermostability than MTG.

    An attempt was made to study the influence of BTG induced cross-linking on the properties of SPI. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results indicated that almost all protein constituents (α’, α, β, AS, and BS) in SPI could be cross-linked with BTG treatment. The BTG treatment also resulted in a significant increase (*P < 0.05) in SPI mean particle size. Emulsifying activity and stability were improved from 0.11535 m

    g

    and 48.3% for native SPI to 0.13252 m

    g

    and 83.9% for SPI treated with BTG at 6 h. Similarly, the modified SPI showed better foam activity (1.32 mL) and stability (87.6%) than the original SPI (0.93 mL and 56.8%). The water-holding capacity of SPI gel was found to increase with time, with a value of 95.43% at 6 h. Furthermore, SPI gel’s texture profiles were greatly improved by adding BTG (*P < 0.05).

    The results of the present study indicated that BTG could be a promising cross-linking agent for improving the functional characteristics of SPI. As a substitute for MTG, BTG could thus potentially be used for food structure engineering to enhance the functional characteristics of multiple proteins to advance the development of food chemistry. © 2020 Society of Chemical Industry.

    The results of the present study indicated that BTG could be a promising cross-linking agent for improving the functional characteristics of SPI. As a substitute for MTG, BTG could thus potentially be used for food structure engineering to enhance the functional characteristics of multiple proteins to advance the development of food chemistry. © 2020 Society of Chemical Industry.TMEM173 has been reported to participate in endoplasmic reticulum stress, inflammation and immunology, all of which closely involved with cardiac hypertrophy. But its role in autophagy is not fully figured out. In our research, Tmem173 global knockout (KO) mice manifested more deteriorated hypertrophy, fibrosis, inflammatory infiltration and cardiac malfunction compared with wild type C57BL/6 mice after 6 weeks of transverse aortic constriction. And KO mice showed inhibited autophagosome degradation in myocardium observed under transmission electron microscope and in protein level. In in vitro experiments conducted in neonatal rat cardiomyocytes under phenylephrine treatment, the abundance of Tmem173 gene was negatively related to the abundance of LC3-Ⅱ and the number of red and yellow fluorescent dots, of which reflected the capacity of autophagosome degradation. These results indicated that TMEM173 might be a promoter of autophagic flux and protected against pressure overload-induced cardiac hypertrophy. It may serve as a potential therapeutic target for cardiac hypertrophy in the future.CXCL6, contraction of C-X-C motif chemokine ligand 6, whose biological roles have been rarely described in esophageal squamous cell carcinoma (ESCC). To understand the clinicopathological and biological roles played by CXCL6 in the growth and metastasis of ESCC, immunohistochemistry was used to detect the expression of CXCL6 in ESCC tissues, totaling 105 cases; and the correlation was statistically analyzed between CXCL6 expression and clinicopathological parameters. The role mediated in migration and invasion was evaluated using wound-healing and Transwell assays. MTT and flow cytometry were used to assay the proliferative variation. In vivo, tail vein injection model was established in nude mice xenografted with human ESCC cell lines whose CXCL6 were artificially manipulated. It was found that relative to normal control, CXCL6 was profoundly higher in ESCC; upregulated CXCL6 only significantly correlated with differentiation degree. In vitro, CXCL6 was found to promote the proliferation, migration, and invasion of ESCC cells; which was fully corroborated by nude mice experiment that CXCL6 can promote the growth and metastases of ESCC cells in vivo. Mechanistically, CXCL6 was discovered to be capable of promoting epithelial-mesenchymal transition and upregulating PD-L1 expression through activation of the STAT3 pathway. Collectively, all the data we showed here demonstrate that CXCL6 can enhance the growth and metastases of ESCC cells both in vivo and in vitro.Uncontrolled proliferation and altered metabolic reprogramming are hallmarks of cancer. Active glycolysis and glutaminolysis are characteristic features of these hallmarks and required for tumorigenesis. A fine balance between cancer metabolism and autophagy is a prerequisite of homeostasis within cancer cells. Here we show that glutamate pyruvate transaminase 2 (GPT2), which serves as a pivot between glycolysis and glutaminolysis, is highly upregulated in aggressive breast cancers, particularly the triple-negative breast cancer subtype. Abrogation of this enzyme results in decreased tricarboxylic acid cycle intermediates, which promotes the rewiring of glucose carbon atoms and alterations in nutrient levels. Concordantly, loss of GPT2 results in an impairment of mechanistic target of rapamycin complex 1 activity as well as the induction of autophagy. Furthermore, in vivo xenograft studies have shown that autophagy induction correlates with decreased tumor growth and that markers of induced autophagy correlate with low GPT2 levels in patient samples. Taken together, these findings indicate that cancer cells have a close network between metabolic and nutrient sensing pathways necessary to sustain tumorigenesis and that aminotransferase reactions play an important role in maintaining this balance.

    Trivalent chromium (Cr) is involved in carbohydrate, lipid, protein and nucleic acid metabolism in animals. see more This study evaluated the effects of different organic Cr forms with Cr methionine (CrMet), Cr picolinate (CrPic), Cr nicotinate (CrNic), and Cr yeast (Cr-yeast) at the level of 400 μg kg

    Cr, on growth performance, lipid metabolism, antioxidant status, breast amino acid and fatty acid profiles of broilers. In total, 540 one-day-old Arbor Acres male broilers were randomly assigned to five treatments with six replicates (18 broilers per replicate) until day 42.

    The results showed growth performance was not affected by Cr sources. The Cr-yeast group had lower serum cortisol levels than the CrNic group (P < 0.05). Besides, Cr-yeast increased methionine and cysteine content in breast compared with the control group. Liver malondialdehyde content was lower in the CrMet group than the CrPic group on day 42 (P < 0.05). The n-3 polyunsaturated fatty acid (PUFA) values were increased, but the n-6/n-3 PUFA ratio was decreased in both CrMet and CrNic groups (P < 0.