• Guerra Glass posted an update 1 month, 2 weeks ago

    The photocatalytic degradation difference is mainly stemmed from the higher contents of COOH and CO functional groups. The intimate contact or interaction between the two phases of GCN and nanocarbon in the nanocomposites may further improve the activity. This work provides insight in the design of highly efficient metal-free photocatalysts to better utilise the clean and free solar energy for environmental remediation. BACKGROUND AND AIMS Calreticulin is a chaperone and master regulator of intracellular calcium homeostasis. Several additional functions have been discovered. Human and parasite calreticulin have been shown to suppress mammary tumor growth in vivo. Here, we explored the capacity of recombinant Taenia solium calreticulin (rTsCRT) to modulate cancer cell growth in vitro. METHODS We used different concentrations of rTsCRT to treat cancer cell lines and analyzed viability and colony formation capacity. We also tested the combination of the IC20 or IC50 doses of rTsCRT and of the chemotherapeutic drug 5-fluorouracil on MCF7 and SKOV3 cell lines. As a control, the non-tumorigenic cell line MCF10-A was employed. The effect of the drug combinations was also assessed in cancer stem-like cells. Additionally, scavenger receptor ligands were employed to identify the role of this receptor in the rTsCRT anti-tumoral effect. RESULTS rTsCRT has a dose-dependent in vitro anti-tumoral effect, being SKOV3 the most sensitive cell line followed by MCF7. When rTsCRT/5-fluorouracil were used, MCF7 and SKOV3 showed a 60% reduction in cell viability; colony formation capacity was also diminished. Treatment of cancer stem-like cells from MCF7 showed a higher reduction in cell viability, while those from SKOV3 were more sensitive to colony disaggregation. Finally, pharmacological inhibition of the scavenger receptor, abrogated the reduction in viability induced by rTsCRT in both the parental and stem-like cells. CONCLUSION Our data suggest that rTsCRT alone or in combination with 5-fluorouracil inhibits the growth of breast and ovarian cancer cell lines through its interaction with scavenger receptors. Natural products have shown promise for epigenetic modulations and thus are therapeutically potential for cancer prevention and treatment. In this work, we report the identification of natural product Biochanin A as a new LSD1 inhibitor and further biological evaluation in gastric MGC-803 cells. Biochanin A effectively and reversibly inhibited LSD1 (IC50 = 2.95 μM) and showed selective inhibition to LSD1 over MAO-A/B. In gastric MGC-803 cells, Biochanin A induced accumulation of H3K4me1/2, inhibited cell growth moderately (IC50 = 6.77 µM), but was less toxic to normal GES-1 (IC50 > 32 µM). Mechanistic studies showed that Biochanin A suppressed colony formation, cell apoptosis, and migration of MGC-803 cells. This study may help to elucidate the anticancer mechanisms of Biochanin A. The two series of thiosemicarbazone derivatives with thiazolidine-2,4-dione (TZD) core were designed and synthesized. The antimycobacterial activity of the target compounds was tested against Mycobacterium tuberculosis H37Ra by broth microdilution method with resazurin as an indicator of the metabolic activity of mycobacteria. Conducted studies revealed antimycobacterial activity in the concentration range of 0.031-64 µg/ml for 31 synthesized derivatives with TZD core. The highest antimycobacterial activity (MIC = 0.031-0.125 µg/ml) was demonstrated for the new group of compounds TZD-based hybrids with 4-unsubstituted thiosemicarbazone substituent. Furthermore, all the tested compounds within this group were characterized by low cytotoxicity. Among tested compounds, two compounds are the most promising potential antimycobacterial agents since they not only show very low MIC values, but also non-toxicity against Vero cells at tested concentration range. High effectiveness and safety of these synthesized compounds makes them promising candidates as antimycobacterial agents. Internal release of nutrients is an important contributor to the nutrient dynamics in shallow eutrophic lakes. Zoobenthic organisms may contribute to this release by excreting nutrients to the overlaying water. Based on experiments and using results from previous experimental studies as well as field monitoring density data from 2007 to 2017, we calculated the annual and seasonal nutrient excretions of the two most common macroinvertebrates (Corbicula fluminea and Limnodrilus hoffmeisteri) in Lake Taihu, China. BGB-8035 We compared these rates with the concentrations of NH4-N, total nitrogen (TN), PO4-P and total phosphorus (TP) in the lake water as well as with previous results of release rates from undisturbed sediments collected in the lake. The spatial distribution of nutrient excretion by the two invertebrate species varied markedly among sites and years. Regression analyses revealed significant relationships between total nutrient excretions by these two species and the concentrations of NH4-N, TN, PO4-P and TP in the lake, but with seasonal differences. The relationship was overall strongest in winter, followed by spring, and weakest in summer and autumn. The flux of NH4-N and PO4-P released by the two macroinvertebrate species were equivalent to as much as 50% and 66%, respectively, of the sediment release recorded in lab experiments under undisturbed conditions; however, the percentages would be somewhat lower under field conditions where the sediment is subjected to frequent wind-induced resuspension and fish disturbance, enhancing the release rates. The release declined during the study period due to a reduction in the density of macroinvertebrates, perhaps indicating increasing stocking of fish since 2007. Our results indicate that benthic invertebrates are important contributor to the internal loading in shallow eutrophic lakes. Antibiotic and heavy metal pollution of aquatic environments are issues of serious concern, and the macrophyte Myriophyllum aquaticum may provide a viable solution for the removal of these contaminants. However, the toxic effects of coexisting tetracyclines (TCs) and Cu(II) on this plant species are currently unclear. In the present study, we constructed wetland microcosms planted with M. aquaticum and spiked these with three TCs (tetracycline, oxytetracycline, and chlortetracycline) and Cu(II) at concentrations ranging from 100 to 10,000 μg/L to investigate how Cu(II) influences the growth and tolerance responses of plants to TCs. After 12 weeks, we found that TCs had accumulated in the plants, and that plant growth and characteristics were significantly affected by the levels of both TCs and Cu(II). While low Cu(II) levels had a synergistic effect on the accumulation of TCs, high levels were observed to reduce accumulation. However, low levels of TCs and Cu(II) had a hormesis effect on plant growth, with plant biomass and leaf chlorophyll content decreasing and the malondialdehyde content and activities of antioxidant enzymes gradually increasing with an increase in TC dosage.