• Wynn Temple posted an update 1 month, 2 weeks ago

    The identification of food fish bearing anthropogenic contaminants is one of many priorities for Indigenous peoples living in the Arctic. Mercury (Hg), arsenic (As), and persistent organic pollutants including polychlorinated biphenyls (PCBs) are of concern, and these are reported, in some cases for the first time, for fish sampled in and around King William Island, located in Nunavut, Canada. More than 500 salmonids, comprising Arctic char, lake trout, lake whitefish, and ciscoes, were assayed for contaminants. The studied species are anadromous, migrating to the ocean to feed in the summers and returning to freshwater before sea ice formation in the autumn. Assessments of muscle Hg levels in salmonids from fishing sites on King William Island showed generally higher levels than from mainland sites, with mean concentrations generally below guidelines, except for lake trout. In contrast, mainland fish showed higher means for As, including non-toxic arsenobetaine, than island fish. Lake trout were highest in As and PCB levels, with salmonid PCB congener analysis showing signatures consistent with the legacy of cold-war distant early warning stations. After DNA-profiling, only 4-32 Arctic char single nucleotide polymorphisms were needed for successful population assignment. These results support our objective to demonstrate that genomic tools could facilitate efficient and cost-effective cluster assignment for contaminant analysis during ocean residency. We further suggest that routine pollutant testing during the current period of dramatic climate change would be helpful to safeguard the wellbeing of Inuit who depend on these fish as a staple input to their diet. Moreover, this strategy should be applicable elsewhere.With increasing use of mobile phones, exposure to radiofrequency electromagnetic field (RF-EMF) in the high-frequency band associated with mobile phones has become a public concern, with potentially adverse effects on cognitive function in children and adolescents. However, findings regarding the relation of RF-EMF and cognitive function in children and adolescents have been inconsistent due to a number of study design-related factors, such as types of exposure and outcome measures, age of participants, and the era of study conduction. The present literature review focused on these possible factors that could explain this inconsistency. This review identified 12 eligible studies (participants ages 4 to 17 years) and extracted a total 477 relations. In total, 86% of the extracted relations were not statistically significant; in the remaining 14%, a negative relation between RF-EMF and cognitive performance was detected under limited conditions when (1) RF-EMF was assessed using objective measurement not subjective measurement (i.e., questionnaire), (2) participants were relatively older (12 years and above) and had greater opportunity of exposure to RF-EMF, and (3) the collection of cognitive function data was conducted after 2012. Given that 86% of the extracted relations in this analysis were not statistically significant, the interpretation should be approached with caution due to the possibility of the 14% of significant relationships, extracted in this review, representing chance findings.Aerosol jet printing of electronic devices is increasingly attracting interest in recent years. However, low capability and high resistance are still limitations of the printed electronic devices. In this paper, we introduce a novel post-treatment method to achieve a high-performance electric circuit. The electric circuit was printed with aerosol jet printing method on an ULTEM substrate. The ULTEM substrate was fabricated by the Fused Deposition Modelling method. After post-treatment, the electrical resistance of the printed electric circuit was changed from 236 mΩ to 47 mΩ and the electric property was enhanced. It was found that the reduction of electric resistance was caused by surface property changes. Different surface analysis methods including scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (XPS) were used to understand the effectiveness of the proposed method. The results showed that the microsurface structure remained the same original structure before and after treatment. It was found that the surface carbon concentration was significantly increased after treatment. Detailed analysis showed that the C-C bond increased obviously after treatment. The change of electrical resistance was found to be limited to the material’s surface. After polishing, the circuit resistance was changed back to its original value. As the electric circuit is the basic element of electric devices, the proposed method enables the fabrication of high performance devices such as capacitors, strain gauge, and other sensors, which has potential applications in many areas such as industrial, aerospace, and military usage.Patients with severe mental illness have increased mortality, often linked to cardio-metabolic disease. Non-alcoholic fatty liver disease (NAFLD) incidence is higher in patients with schizophrenia and is exacerbated with antipsychotic treatment. NAFLD is associated with obesity and insulin resistance, both of which are induced by several antipsychotic medications. NAFLD is considered an independent risk factor for cardiovascular disease, the leading cause of death for patients with severe mental illness. Although the clinical literature clearly defines increased risk of NAFLD with antipsychotic therapy, the underlying mechanisms are not understood. Given the complexity of the disorder as well as the complex pharmacology associated with atypical antipsychotic (AA) medications, we chose to use a proteomic approach in healthy mice treated with a low dose of risperidone (RIS) or olanzapine (OLAN) for 28 days to determine effects on development of NAFLD and to identify pathways impacted by AA medications, while removing confounding intrinsic effects of mental illness. Epigenetic inhibitor Both AA drugs caused development of steatosis in comparison with vehicle controls (p less then 0.01) and affected multiple pathways relating to energy metabolism, NAFLD, and immune function. AA-associated alteration in autonomic function appears to be a unifying theme in the regulation of hepatic pathology.