• Tate Currin posted an update 1 month, 3 weeks ago

    An increasing number of examples demonstrate that the use of two mutually compatible chiral catalysts in one-pot conditions can help realize the long-cherished goal of simultaneous control of absolute and relative configurations in asymmetric catalysis. Engaging two transition metal catalysts for this goal presents a considerable degree of mechanistic challenge to control the mode of substrate activation as well as origin of enantio- and diastereoselectivities, both of which are central to the burgeoning domain of stereodivergent catalysis. We have employed density functional theory (B3LYP-D3) computations to investigate an important stereodivergent reaction between azaaryl acetamide and cinnamyl methyl carbonate. These compounds participate in the stereocontrolling C-C bond formation in the form of activated substrates, respectively, when bound to chiral Cu-Walphos and Ir-phosphoramidite catalysts. Herein, we provide the molecular origin of how all four stereoisomers of the product bearing two contiguous stereogenic centers could be accessed by changing the combinations of chiral catalysts (C1(R,Rp) or C2(S,Sp) of Cu-Walphos in conjunction with P1(R,R,R) or P2(S,S,S) of Ir-phosphoramidite catalysts). The origin of stereodivergence is identified to depend on the differences in the number and nature of noncovalent interactions (NCIs) in the stereocontrolling transition states. In particular, NCIs between the chiral catalysts (C-H···π in C1-P1 catalyst dyad and C-H···π, C-H···F, and π···π in C2-P1) in stereocontrolling transition states are found to be the differentiating factors rendering one of the four stereochemically distinct transition states to be the lowest energy one for a given catalyst combination. These molecular insights suggest that subtle modifications to the catalyst framework could be further exploited in stereodivergent catalysis.Osteoarthritis (OA) is a common degenerative joint disease for which an effective therapeutic strategy has not yet been established. AGEs are widely recognized as a contributor to OA pathogenesis. GPR4, a recently discovered proton-sensing transmembrane receptor, has been shown to possess a wide range of physiological functions. However, the potential role of this receptor in chondrocytes and the pathogenesis of OA is unclear. In the present study, we investigated the potential of GPR4 to modulate the effects of advanced glycation end products (AGEs) in SW1353 human chondrocytes. First, we demonstrate that GPR4 is fairly expressed in SW1353 chondrocytes and that exposure to AGEs increases the expression of this transmembrane receptor. Second, we found that antagonism of GPR4 with NE 52-QQ57 significantly inhibited the AGE-induced increased expression of several key inflammatory cytokines and signaling molecules, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, inducible nitric oxide synthase (iNOS), nitric oxide (NO), cyclooxygenase 2 (COX2), and prostaglandin E2 (PGE2). We also found that antagonisn of GPR4 had a remarkable ability to rescue type II collagen from AGE-induced degradation by inhibiting the expression of matrix metalloproteinase (MMP)-3 and MMP-13. As a key pro-inflammatory signaling pathway, we further tested the effect of GPR4 antagonism on the activation of nuclear factor-κB (NF-κB) and found that NF-κB activation was indeed suppressed, thereby indicating that the NF-κB signaling pathway may mediate the effects of GPR4 antagonism described above. These findings provide a basis for further research into the role of GPR4 -mediated signaling in OA.Determination of uranium isotope ratios is of great expedience for assessing its origin in environmental samples. In particular, the 236U/238U isotope ratio provides a powerful tool to discriminate between the different sources of uranium (uranium ore, geochemical background, and uranium from anthropogenic activities). However, in the environment, this ratio is typically below 10-8. This low abundance of 236U and the presence in large excess of major isotopes (mainly 238U and 235U) complicates the accurate detection of 236U signal by mass spectrometry and thus highly sensitive analytical instruments providing high abundance sensitivity are required. This work pushes the limits of triple quadrupole-based ICP-MS technology for accurate detection of 236U/238U isotope ratios down to 10-10, which is so far mainly achievable by AMS. Coupled with an efficient desolvating module, N2O was used as the reaction gas in the collision reaction cell of the ICP-MS/MS. This configuration allows a significant decrease of the uranium polyatomic interferences (235UH+ ions) and an accurate determination of low 236U/238U isotope ratios. This new methodology was successfully validated through measurements of certified reference material from 10-7 to 10-9 and then through comparisons with AMS measurement results for ratios down to 10-10. This is the first time that 236U/238U isotope ratios as low as 10-10 were determined by ICP-MS/MS. The possibility of measuring low 236U/238U isotope ratios can offer a large variety of geochemical applications in particular for the determination of uranium sources in the environment.In the world of increasing energy consumption, nanogenerators have shown great potential for energy harvesting and self-powered portable electronics. WNK-IN-11 Herein, a flexible and dual-mode triboelectric nanogenerator (TENG) combining both vertical contact-separation and single electrical modes has been developed to convert environmental mechanical energy into electricity using highly encapsulated and multifunctional strategies. By introducing the polymer melt wetting technique, polymer nanotubes are fabricated on the surface of the TENG, which provides self-cleaning and hydrophobic features beneficial for water drop energy harvesting using the device. In such mechanical energy harvesting, the maximum output power of 0.025 mW and the open-circuit voltage of 41 V can be achieved. By designing the dimensions of the device, the dual-mode TENG is utilized as a self-powered sensor to detect human body motions such as phalanges’ movement of fingers. The fabricated dual-mode TENG promotes the development of energy-harvesting and self-powered human motion sensors for artificial intelligent prosthetics, human kinematics, and human body recovery treatment.