-
Godwin Faber posted an update 1 month, 2 weeks ago
Lysosomal desialylation is the initial step in the degradation of sialo-glycopeptides that is essential for regenerating sialo-glycoconjugates. Neu1 sialidase is the enzyme responsible for the removal of sialic acid in the mammalian lysosome. Although Neu1 sialidases are conserved in fish similar to mammals, their physiological functions remain to be fully understood. Nile tilapia (Oreochromis niloticus) is known to possess two putative Neu1 sialidases (Neu1a and Neu1b) in the genome that may have arisen by gene duplication (specifically in cichlidae family members). This suggests that understanding the Neu1 sialidase in fish, particularly cichlids, could provide insights into the (novel) physiological functions of these genes. Moreover, characterization of the tilapia Neu1 sialidase is paramount to ensure clarity of the desialylation reaction performed by the fish sialidases (like the characterized tilapia sialidases Neu3 and Neu4). Therefore, this study focused on the characterization of the tilapia Neu1 sind 84 hpf and mildly decreased from 84 to 144 hpf. In contrast, the transcript levels of neu1b did not change between 84 and 144 hpf and the expression of neu3a gradually increased between 84 and 120 hpf and drastically decreased at 144 hpf. The highest level of the neu4 transcripts was detected at 84 hpf. These expression patterns were different from those in Japanese medaka, possibly due to the different developmental program found in the tilapia embryo accompanied with the unique profiles of the tilapia sialidases. BACKGROUND Studies showed that increased let-7b-5p microRNA during repeated electroacupuncture (EA) treatment was associated the formation of EA tolerance, which manifested as gradually decreased nociceptive threshold. Proenkephalin (PENK) is the precursor of enkephalin which is a pivot neuropeptide responsible for the decreased nociceptive threshold in EA. The aim of this study was to evaluate the relationship between let-7b-5p and PENK in EA tolerance. METHODS The target gene of let-7b-5p microRNA was determined through the dual-luciferase reporter assay in cortical neurons. Seventy-two Sprague Dawley rats received a combination of EA and intracerebroventricular injection of microRNA (let-7b-5p agomir, antagomir or their controls). The nociceptive thresholds were assessed with radiant heat tail-flick method. PENK and let-7b-5p were measured with Western Blot and qPCR, respectively, after administration of let-7b-5p agomir, antagomir, and their controls at day 1, 4 and 7. RESULTS Let-7b-5p targeted the 3′ untranslated region of Penk1. The nociceptive thresholds in Let-7b-5p agomir + EA group were decreased (p less then 0.05) compared with those in Let-7b-5p antagomir + EA group at day 1 to 7. Compared with Let-7b-5p agomir + EA group, the expression level of PENK in Let-7b-5p antagomir + EA group was increased at days 1, 4, and 7 (p less then 0.05) CONCLUSION Let-7b-5p may be a new potential target for decreasing the EA tolerance effect and facilitating the application of EA in treating chronic nociception of patients. Homozygous loss-of-function variants in MYO18B have been associated with congenital myopathy, facial dysmorphism and Klippel-Feil anomaly. So far, only four patients have been reported. Comprehensive description of new cases that help to highlight recurrent features and to further delineate the phenotypic spectrum are still missing. We present the fifth case of MYO18B-associated disease in a newborn male patient. Trio exome sequencing identified the previously unreported homozygous nonsense variant c.6433C>T, p.(Arg2145*) in MYO18B (NM_032608.5). While most phenotypic features of our patient align with previously reported cases, we describe the prenatal features for the first time. Taking the phenotypic description of our patient into account, we propose that the core phenotype comprises a severe congenital myopathy with feeding difficulties in infancy and characteristic dysmorphic features. Donepezil, a selective acetylcholinesterase (AchE) inhibitor, enhances stroke-induced neurogenesis within subventricular zone (SVZ). Src/Pyk-2 is one of the downstream pathways of acetylcholine receptors (AchRs), and has been shown to participate in the activation of fibroblast growth factor receptor (FGFR)/epidermal growth factor receptor (EGFR) signaling in cancer cells. In this study, we investigated whether donepezil could promote SVZ neurogenesis in chronic cerebral hypoperfusion (CCH) injury via Src signaling pathway. In the bilateral carotid artery occlusion (2VO) rat model, we observed more nestin/5-bromo-2′-deoxyuridine (BrdU)-positive cells and doublecortin (DCX)/BrdU-positive cells in the SVZ than that in the sham group. selleck chemicals Further, donepezil obviously improved neurologic function after 2VO, induced the greater number of SVZ proliferative NSCs and neuroblasts, and elevated levels of Src, p-FGFR1, p-EGFR, p-Akt and p-Raf in ipsilateral SVZ. Lastly, Src inhibitor KX-01 abolished the beneficial effects of donepezil in 2VO rats. These results suggest that donepezil could upregulate Src signaling pathway to enhance CCH-induced SVZ neurogenesis. Glioblastoma (GBM) has been regarded as the most aggressive disease in the nervous system. Accumulating literatures have illustrated the crucial role of competing endogenous RNAs (ceRNAs) network in the pathogenesis and progression of various tumors. The promoting effect of LEF1-AS1 on GBM development has been previously identified. This study attempted to explore the underlying mechanism of LEF1-AS1 in GBM. Data of clinical GBM patients was downloaded from TCGA and GEO databases. The proliferative ability, clonogenic vitality, invasive, and migratory capabilities of GBM cells were measured using Cell counting kit-8 (CCK-8), colony formation and transwell assays. Luciferase reporter gene analysis was performed to verify the correlations between LEF1-AS1/EN2 and miR-543. qRT-PCR and western blotting were implemented to evaluate the mRNA and protein levels, respectively. Our results consolidated that LEF1-AS1 was highly expressed in GBM tissue specimens and its up-regulation induced unfavorable prognosis. The loss/gain-of-function analyses verified that LEF1-AS1 promoted the GBM cell malignant behaviors.