-
Hussein Josefsen posted an update 1 month, 3 weeks ago
58 g·L-1). The predominant metabolic compounds from these natural extracts were putatively identified by using a high-resolution quadrupole-time of flight (QToF) LC-MS instrument. The high-resolution accurate mass-based screening resulted in identification of 88 predominant metabolites, which included dihydrodaidzein-7-O-glucuronide, micromeric acid, syringic acid, morin, quercetin-3-O-(6″-malonyl-glucoside), 4-hydroxycoumarin, dihydrocaffeic acid-3-O-glucuronide, to name some, with less than 5 ppm of mass error.We report that the results of our study indicate that Lactobacillus brevis 47 f strain isolated from the faeces of a healthy individual prevents the manifestations of experimental mucositis induced by treatment of Balb/c mice with the anticancer drug 5-fluorouracil (5 FU; 100 mg/kg i.p. × 3 days). The presence of damage to the intestine and the colon was determined by a morphometric analysis of specimens including the height of villi, the amount of goblet cells and infiltrating mononuclear cells, and the expression of the proliferative Ki-67 antigen. Changes in the lipid peroxidation in the blood and the intestine were determined by severalfold increase of the concentration of malonic dialdehyde. Oral administration of L.brevis 47 f strain prior to 5 FU decreased the drug-induced morphological and biochemical changes to their respective physiological levels; the ability of intestinal epitheliocytes to express Ki-67 was partially restored. These effects of L.brevis 47 f strain were more pronounced or similar to those of the reference compound Rebamipid, a quinoline derivative known to protect the gut from drug-induced toxicity. Thus, the new lactobacilli strain attenuates the severity of 5 FU-induced enteropathy.Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2. The disease was first detected in Wuhan, the capital of China’s Hubei province, in December 2019 and has since spread globally, especially to Europe and North America, resulting in the ongoing global coronavirus pandemic disaster of 2019-2020. Although most cases have mild symptoms, there is some progression to viral pneumonia and multi-organ failure and death. More than 4.6 million cases have been registered across 216 countries and territories as of 19 April 2020, resulting in more than 311,000 deaths. Risk to communities with continued widespread disease transmission depends on characteristics of the virus, including how well it spreads between people; the severity of resulting illness; and the medical or other measures available to control the impact of the virus (for example, vaccines or medications that can treat the illness) and the relative success of these. In the absence of vaccineences in the public’s perception of risks posed by communicable disease threats such as presented by COVID-19, emergency management agencies should use these differences to develop targeted strategies to enhance community and national preparedness by promoting behavioral change and improving risk management decision-making.Due to the large number of possible applications in quantum technology fields-especially regarding quantum sensing-of nitrogen-vacancy (NV) centers in nanodiamonds (NDs), research on a cheap, scalable and effective NDs synthesis technique has acquired an increasing interest. Standard production methods, such as detonation and grinding, require multistep post-synthesis processes and do not allow precise control in the size and fluorescence intensity of NDs. For this reason, a different approach consisting of pulsed laser ablation of carbon precursors has recently been proposed. In this work, we demonstrate the synthesis of NV-fluorescent NDs through pulsed laser ablation of an N-doped graphite target. The obtained NDs are fully characterized in the morphological and optical properties, in particular with optically detected magnetic resonance spectroscopy to unequivocally prove the NV origin of the NDs photoluminescence. Moreover, to compare the different fluorescent NDs laser-ablation-based synthesis techniques recently developed, we report an analysis of the effect of the medium in which laser ablation of graphite is performed. Along with it, thermodynamic aspects of the physical processes occurring during laser irradiation are analyzed. Finally, we show that the use of properly N-doped graphite as a target for laser ablation can lead to precise control in the number of NV centers in the produced NDs.Pathogenic variants in the MT-ATP6 are a well-known cause for maternally inherited mitochondrial disorders associated with a wide range of clinical phenotypes. Here, we present a 31- year old female with insulin-dependent diabetes mellitus, recurrent lactic acidosis and ketoacidosis recurrent infections with suspected immunodeficiency with T cell lymphopenia and hypogammaglobulinemia as well as proximal tetraparesis with severe muscle and limb pain and rapid physical exhaustion. Muscle biopsy and respiratory chain activities were normal. Single-exome sequencing revealed a variant in the MT-ATP6 gene m.9143T>C. Analysis of further specimen of the index and mother (segregation studies) revealed the highest mutation load in muscle (99% level of mtDNA heteroplasmy) of the index patient. Interestingly, acute metabolic and physical decompensation during recurrent illness was documented to be a common clinical feature in patients with MT-ATP6 variants. However, it was not mentioned as a key symptom. Thus, we suggest that the clinical spectrum might be expanded in ATP6-associated diseases.The aim of this article is to present the influence of detector selection for the image-based Terrestrial Laser Scanning (TLS) registration method. The presented results are the extended continuation of investigations presented in the article, ‘The Influence of the Cartographic Transformation of TLS Data on the Quality of the Automatic Registration’. Inflammation inhibitor In order to obtain the correct results of the TLS registration process, it is necessary to detect and match the correct tie points, which are evenly distributed across the entire area. Commonly, for TLS data registration manually or semi-manually corresponding points are detected. However, when large, complicated cultural heritage objects are investigated, it is sometimes impossible to place marked control points. The only possibility of resolving this problem is the use of image-based TLS data registration. One of the most important factors that influences the quality and ability to use it correctly, is accurate selection. For this purpose, the authors decided to test three blob detectors ASIFT, SURF, CenSurE, and two point detectors FAST and BRISK.