• Skov Wilkinson posted an update 1 month, 3 weeks ago

    Sulfonates include diverse natural products and anthropogenic chemicals and are widespread in the environment. Many bacteria can degrade sulfonates and obtain sulfur, carbon, and energy for growth, playing important roles in the biogeochemical sulfur cycle. Cleavage of the inert sulfonate C-S bond involves a variety of enzymes, cofactors, and oxygen-dependent and oxygen-independent catalytic mechanisms. Sulfonate degradation by strictly anaerobic bacteria was recently found to involve C-S bond cleavage through O2-sensitive free radical chemistry, catalyzed by glycyl radical enzymes (GREs). The associated discoveries of new enzymes and metabolic pathways for sulfonate metabolism in diverse anaerobic bacteria have enriched our understanding of sulfonate chemistry in the anaerobic biosphere. An anaerobic environment of particular interest is the human gut microbiome, where sulfonate degradation by sulfate- and sulfite-reducing bacteria (SSRB) produces H2S, a process linked to certain chronic diseases and conditions.Collagen is the most abundant protein in mammals. A unique feature of collagen is its triple-helical structure formed by the Gly-Xaa-Yaa repeats. Three single chains of procollagen make a trimer, and the triple-helical structure is then folded in the endoplasmic reticulum (ER). Selleckchem UNC 3230 This unique structure is essential for collagen’s functions in vivo, including imparting bone strength, allowing signal transduction, and forming basement membranes. The triple-helical structure of procollagen is stabilized by posttranslational modifications and intermolecular interactions, but collagen is labile even at normal body temperature. Heat shock protein 47 (Hsp47) is a collagen-specific molecular chaperone residing in the ER that plays a pivotal role in collagen biosynthesis and quality control of procollagen in the ER. Mutations that affect the triple-helical structure or result in loss of Hsp47 activity cause the destabilization of procollagen, which is then degraded by autophagy. In this review, we present the current state of the field regarding quality control of procollagen.SNARE proteins and Sec1/Munc18 (SM) proteins constitute the core molecular engine that drives nearly all intracellular membrane fusion and exocytosis. While SNAREs are known to couple their folding and assembly to membrane fusion, the physiological pathways of SNARE assembly and the mechanistic roles of SM proteins have long been enigmatic. Here, we review recent advances in understanding the SNARE-SM fusion machinery with an emphasis on biochemical and biophysical studies of proteins that mediate synaptic vesicle fusion. We begin by discussing the energetics, pathways, and kinetics of SNARE folding and assembly in vitro. Then, we describe diverse interactions between SM and SNARE proteins and their potential impact on SNARE assembly in vivo. Recent work provides strong support for the idea that SM proteins function as chaperones, their essential role being to enable fast, accurate SNARE assembly. Finally, we review the evidence that SM proteins collaborate with other SNARE chaperones, especially Munc13-1, and briefly discuss some roles of SNARE and SM protein deficiencies in human disease.Cullin-RING ubiquitin ligases (CRLs) are dynamic modular platforms that regulate myriad biological processes through target-specific ubiquitylation. Our knowledge of this system emerged from the F-box hypothesis, posited a quarter century ago Numerous interchangeable F-box proteins confer specific substrate recognition for a core CUL1-based RING E3 ubiquitin ligase. This paradigm has been expanded through the evolution of a superfamily of analogous modular CRLs, with five major families and over 200 different substrate-binding receptors in humans. Regulation is achieved by numerous factors organized in circuits that dynamically control CRL activation and substrate ubiquitylation. CRLs also serve as a vast landscape for developing small molecules that reshape interactions and promote targeted ubiquitylation-dependent turnover of proteins of interest. Here, we review molecular principles underlying CRL function, the role of allosteric and conformational mechanisms in controlling substrate timing and ubiquitylation, and how the dynamics of substrate receptor interchange drives the turnover of selected target proteins to promote cellular decision-making.Fusarium graminearum is the causal agent of Fusarium head blight (FHB), which reduces crop yield and contaminates grains with poisonous trichothecene mycotoxins, including deoxynivalenol (DON). DON functions as an important virulence factor that promotes FHB spread in wheat; therefore, reducing DON production will decrease yield losses to FHB and enhance food safety. Recent progress using topical application of double-stranded (dsRNA) to reduce F. graminearum infection has provided encouraging results. In this study, we designed and synthesized dsRNA targeting the transcription factor TRI6 (TRI6-dsRNA), which is a key regulator of DON biosynthesis. The expression of F. graminearum TRI6 was significantly reduced in detached wheat heads treated with TRI6-dsRNA solution compared to water-treated controls. Furthermore, TRI6-dsRNA treatments reduced disease and DON accumulation in inoculated detached wheat heads. Therefore, topical applications of TRI6-dsRNA on wheat heads of intact plants were assessed for their ability to reduce FHB and DON under growth chamber and greenhouse conditions. When wheat heads were treated with TRI6-dsRNA solution in growth chamber condition, TRI6-dsRNA treatments failed to prevent FHB spread. However, when wheat heads were treated with TRI6-dsRNA solution under the greenhouse condition, FHB and DON were significantly reduced, and infection was restricted to the inoculated floret. In addition, addition of TRI6-dsRNA to toxin-induction liquid media had no effect on F. graminearum DON production. Our study demonstrates that the efficacy of dsRNA applications is strongly dependent on application methods and environmental conditions.Immune checkpoint inhibitors have improved the treatment landscape of different tumors and one of the emerging issues is the reintroduction of immunotherapy after discontinuation. Scarce evidence is currently available and different definitions have been used. The case of a patient with pretreated advanced urothelial cancer, who responded to immunotherapy retreatment after long-term benefit from the previous course, is reported. Based on a review of the different clinical scenarios, a definition of immunotherapy retreatment was proposed, as rechallenge or reintroduction, based on the reasons of discontinuation of the previous course. Clinical factors potentially associated with clinical benefit from immunotherapy retreatment are discussed, even though ad hoc studies are needed to assess the efficacy and safety of the different immunotherapy retreatment strategies.