• Joyner Tang posted an update 1 month, 3 weeks ago

    e fully described experimental and analytical procedures for reliability and reproducibility.

    Our study suggests that PET quantification of 18F- and 89Zr-labeled tracers is reliable for the evaluation of tumor uptake in preclinical models and a valuable alternative technique for ex vivo biodistribution. However, PET and ex vivo quantification require fully described experimental and analytical procedures for reliability and reproducibility.The synthesis of novel architecture comprising perylene diimide (PDI)-MXene (Ti3C2TX)-integrated graphitic pencil electrode for electrochemical detection of dopamine (DA) is reported. The good electron passage between PDI-MXene resulted in an unprecedented nano-adduct bearing enhanced electrocatalytic activity with low-energy electronic transitions. The anionic groups of PDI corroborated enhanced active surface area for selective binding and robust oxidation of DA, thereby decreasing the applied potential. Meanwhile, the MXene layers acted as functional conducive support for PDI absorption via strong H-bonding. The considerable conductivity of MXene enhanced electron transportation thus increasing the sensitivity of sensing interface. The inclusively engineered nano-adduct resulted in robust DA oxidation with ultra-sensitivity (38.1 μAμM-1cm-2), and low detection limit (240 nM) at very low oxidation potential (-0.135 V). Moreover, it selectively signaled DA in the presence of physiological interferents with wide linearity (100-1000 μM). The developed transducing interface performed well in human serum samples with RSD (0.1 to 0.4%) and recovery (98.6 to 100.2%) corroborating the viability of the practical implementation of this integrated system. Graphical abstract Schematic illustration of the oxidative process involved on constructed sensing interface for the development of a non-enzymatic dopamine sensor.In this review work, we highlight the origin of morphological structures such as nanofibers/nanorods in case of various materials in nano as well as bulk form. In addition, a discussion on different cations of different ionic radii and other intrinsic factors is provided. The materials (ceramic titanates, ferrites, hexaferrites, oxides, organic/inorganic composites, etc.,) exhibiting the nanofibers/nanorods like morphological structures are tabulated. Furthermore, the significance of nanofibers/nanorods obtained from distinct materials is elucidated in multiple scientific and technological fields. At the end, the device applications of these morphological species are also described in the current technology. The nucleation and growth mechanism of α-MnO2 nanorods using natural extracts from Malus domestica and Vitis vinifera [3].

    Integrated whole-body PET/MR technology continues to mature and is now extensively used in clinical settings. However, due to the special design architecture, integrated whole-body PET/MR comes with a few inherent limitations. Firstly, whole-body PET/MR lacks sensitivity and resolution for focused organs. Secondly, broader clinical access of integrated PET/MR has been significantly restricted due to its prohibitively high cost. The MR-compatible PET insert is an independent and removable PET scanner which can be placed within an MRI bore. However, the mobility and configurability of all existing MR-compatible PET insert prototypes remain limited.

    An MR-compatible portable PET insert prototype, dual-panel portable PET (DP-PET), has been developed for simultaneous PET/MR imaging. Using SiPM, digital readout electronics, novel carbon fiber shielding, phase-change cooling, and MRI compatible battery power, DP-PET was designed to achieve high-sensitivity and high-resolution with compatibility with a clinical 3igh-quality images using DP-PET.

    We developed a MR-compatible PET insert prototype and performed several studies to begin to characterize the performance of the proposed DP-PET. The results showed that the proposed DP-PET performed well in the MRI bore and would cause little influence on the MRI images. The Derenzo phantom test showed that the proposed reconstruction method could obtain high-quality images using DP-PET.

    This study’s main purpose was to examine the psychometric properties of FoMOs’ adaptation among the Indonesian adolescents’ population. The second aim was to investigate the concurrent validity of the Indonesian version to provide evidence for the validity. Also, FoMOs’ difference level between demographic variance analyses was performed.

    The study involved a cross-sectional online survey design with 638 Indonesian adolescents aged 16-24 (M = 19.08, SD = 14.70). FoMO was measured by a 16-item that has been modified from the original 10-item. Exploratory and confirmatory factor analyses were carried out to study its scores’ evidence of structural validity. Besides, to study its scores’ evidence of convergent, discriminant, and predictive validity concerning other variables such as stress, anxiety, and depression (Depression and Anxiety Stress Scale-21), and general health condition (General Health Questionnaire Scale-12), correlation analyses were conducted. To study the sensitivity, we assessed the effectmodified 12-item Fear of Missing Out Scale is a valid and reliable instrument for Indonesian adolescents. It showed that the Indonesian version of Fear of Missing Out Scale has adequate psychometric properties to measure Indonesian adolescents’ online behavior.In recent years, the development of lithium-ion batteries (LIBs) with high energy density has become one of the important research directions to fulfill the needs of electric vehicles and smart grid technologies. Nowadays, traditional LIBs have reached their limits in terms of capacity, cycle life, and stability, necessitating their further improvement and development of alternative materials with remarkably enhanced properties. A nitrogen-containing carbon nanotube (N-CNT) host for bimetallic sulfide (NiCo2S4) is proposed in this study as an anode with attractive electrochemical performance for LIBs. The prepared NiCo2S4/N-CNT nanocomposite exhibited improved cycling stability, rate performance, and an excellent reversible capacity of 623.0 mAh g-1 after 100 cycles at 0.1 A g-1 and maintained a high capacity and cycling stability at 0.5 A g-1. Selleck ABT-199 The excellent electrochemical performance of the composite can be attributed to the unique porous structure, which can effectively enhance the diffusivity of Li ions while mitigating the volume expansion during the charge-discharge processes.