• Carr Almeida posted an update 1 month, 3 weeks ago

    In order to improve the accuracy of an infrared thermometer, the main uncertainty sources of the system are analyzed and a compensation function is established on the basis of these corrections. The verification experiments are carried out by using a self-developed infrared thermometer and a blackbody. The experimental results indicate that the compensation function can reduce the infrared thermometer expanded uncertainty from ±3.6 °C to ±1.9 °C in the temperature range of -40 °C to 60 °C. This method can effectively improve the temperature measurement accuracy of an ambient temperature infrared thermometer in its measurement range.Existing human lung-mimicking requirements in various radiology application fields have led to the development of many different phantoms. However, most are static apparatus designed for equipment calibration. Although there are a few dynamic phantoms that generate predefined motions, they have complicated mechanisms that hamper even simple modifications for various lung illness simulations. As a result, existing dynamic phantoms in which a target can be embedded normally generate rectilinear target motions with limited displacement. Nevertheless, volume changes in the human lungs during normal respiration are significant, and targets inside the lungs move along various random paths depending on their location, stiffness, and the properties of the surrounding tissues. In the present work, a novel phantom design is introduced and tested. The phantom mimics the human lung motion and its deformation is initiated by a diaphragm movement. The phantom provides a fairly large deformation and the capability to adjust target motion paths. The presented device has a simple mechanism that can be easily modified to generate various pulmonary diseases. To produce a large deformation by diaphragm compressive motion, polyurethane cubic blocks constitute the deformable part of the lung phantom and a tumor made with silicone is inserted in the structure. BAY-3827 datasheet The assembled lung part is housed within an acrylic case that is filled with water. The phantom system consists of acrylic, plastic, and low-density polyurethane to minimize artifacts when it undergoes computed tomography (CT) scans. The lung part is organized with various density polyurethane blocks, making it possible to produce nonlinear motion paths of the tumor. The lung part is deformed by a silicon film that is driven by external hydraulic pressure. A finite element method simulation and two-dimensional target motion tests were performed to verify phantom performance. The functionality of the proposed phantom system was confirmed in a series of CT images.The traditional stick-slip piezoelectric actuator uses a single flexible hinge structure, and the output force of the piezoelectric stack is greater than the clamping force between the driving foot and the slider, resulting in a small working stroke, slow speed, and poor load capacity. A new piezoelectric actuator based on a two-stage flexible hinge structure is proposed. The piezoelectric actuator uses a combination of a lever flexible hinge and a triangular flexible hinge. The working stroke and speed of the actuator are enlarged by the lever flexible hinge, and the output force of the piezoelectric stack is perpendicular to and greater than the clamping force between the driving foot and the slider through the triangular flexible hinge, which enhances the load capacity of the actuator. First, the structure and working principle of the piezoelectric actuator are presented. The lateral output displacement of the piezoelectric ceramic stack is amplified by the lever amplification structure so that the triangular flexible hinge structure is then used to convert the lateral displacement into a coupled motion composed of longitudinal and lateral displacement to drive the slide rail to generate total displacement. Then, the superiority of the piezoelectric actuator was verified through the analysis of displacement amplification and clamping force and finite element analysis. Finally, the performance of the piezoelectric actuator is studied. It can produce an output speed of 354.55 mm/s under a driving voltage of 4.7 kHz and 150 V, and the maximum load can reach 3 kg. This article provides a new design idea for stick-slip piezoelectric actuators.Optical studies of materials at high pressure-temperature (P-T) conditions provide insights into their physical properties that may be inaccessible to direct determination at extreme conditions. Incandescent light sources, however, are insufficiently bright to optically probe samples with radiative temperatures above ∼1000 K. Here we report on a system to perform optical absorption experiments in a laser-heated diamond anvil cell at T up to at least 4000 K. This setup is based on a pulsed supercontinuum (broadband) light probe and a gated CCD detector. Precise and tight synchronization of the detector gates (3 ns) to the bright probe pulses (1 ns) diminishes the recorded thermal background and preserves an excellent probe signal at high temperature. We demonstrate the efficiency of this spectroscopic setup by measuring the optical absorbance of solid and molten (Mg,Fe)SiO3, an important constituent of planetary mantles, at P ∼30 GPa and T ∼1200 K to 4150 K. Optical absorbance of the hot solid (Mg,Fe)SiO3 is moderately sensitive to temperature but increases abruptly upon melting and acquires a strong temperature dependence. Our results enable quantitative estimates of the opacity of planetary mantles with implications to their thermal and electrical conductivities, all of which have never been constrained at representative P-T conditions, and call for an optical detection of melting in silicate-bearing systems to resolve the extant ambiguity in their high-pressure melting curves.In recent years, it has been realized that low and ultra-low field (mT-nT magnetic field range) nuclear magnetic resonance spectroscopy can be used for molecular structural analysis. However, spectra are often hindered by lengthy acquisition times or require large sample volumes and high concentrations. Here, we report a low field (50 μT) instrument that employs a linear actuator to shuttle samples between a 1 T prepolarization field and a solenoid detector in a laboratory setting. The current experimental setup is benchmarked using water and 13C-methanol with a single scan detection limit of 2 × 1020 spins (3 µl, 55M H2O) and detection limit of 2.9 × 1019 (200 µl, 617 mM 13C-methanol) spins with signal averaging. The system has a dynamic range of >3 orders of magnitude. Investigations of room-temperature relaxation dynamics of 13C-methanol show that sample dilution can be used in lieu of sample heating to acquire spectra with linewidths comparable to high-temperature spectra. These results indicate that the T1 and T2 mechanisms are governed by both the proton exchange rate and the dissolved oxygen in the sample.