• Dreyer Kejser posted an update 1 month, 3 weeks ago

    In conclusion, the findings of this study suggest that HCSP4-Lipo-DOX-miR101 may serve as a promising novel targeted delivery system for improving the therapeutic efficiency of drug-resistant hepatocellular carcinoma.Rhenium dichalcogenides (ReX2, X = S, Se), as a representative type of T”-phase transition metal dichalcogenides (TMDs), have a distinct anisotropic crystal structure as compared to the well-known H- and T-phases and show excellent optical, electronic and catalytic properties. While edges are known to have a profound influence on the physical and chemical properties of two-dimensional materials, they have not been systematically investigated in T”-phase TMDs. We investigated the pristine edge configurations of ReX2 atomic layers using atomic-resolution scanning transmission electron microscopy (STEM) low-dose imaging and density functional theory (DFT) calculations. The pristine edges in monolayer and bilayer ReX2 can be atomically flat with a length up to several tens of nanometers, and are preferentially oriented along either the a axis or b axis. The characteristic 4Re diamond clusters are well preserved along the edges, and ordered structures of the outermost dangling Se atoms were observed, with the Se atoms fully retained, 50% retained or all lost. The edges oriented along the a axis with 100% Se coverage show a ferromagnetic ground state, while their counterparts parallel to b present mid-gap states without appreciable spin-polarization. The anisotropic T” structure also dictates the cracking direction in ReX2, with cracks propagating mainly along the a and b axes. The strain at the crack edges often causes re-orientation of the lattice, which would change the anisotropic behavior of ReX2. Our work provides new insights into the edge configuration in T” TMD atomic layers, and offers new opportunities to tailor the performance of ReX2 by edge engineering.Campylobacter jejuni is a leading cause of food-borne gastrointestinal disease in humans and uropathogenic Escherichia coli is a leading cause of urinary tract infections. Both human pathogens harbour a homologous iron uptake system (termed cjFetM-P19 in C. jejuni and ecFetM-FetP in E. coli). Although these systems are important for growth under iron limitation, the mechanisms by which these systems function during iron transport remain undefined. The copper ions bound to P19 and FetP, the homologous periplasmic proteins, are coordinated in an uncommon penta-dentate manner involving a Met-Glu-His3 motif and exhibit positional plasticity. Here we demonstrate the function of the Met and Glu residues in modulating copper binding and controlling copper positioning through site-directed variants, binding assays, and crystal structures. Growth of C. jejuni strains with these p19 variants is impaired under iron limited conditions as compared to the wild-type strain. Additionally, an acidic residue-rich secondary site is required for binding iron and function in vivo. Finally, western blot analyses demonstrate direct and specific interactions between periplasmic P19 and FetP with the large periplasmic domain of their respective inner membrane transporters cjFetM and ecFetM.An optical sensor (OS) was synthesized by mixing 10,12-pentacosadiinoic acid (PDA) with a triblock copolymer for use in the detection/quantification of lidocaine (LD) in seized cocaine hydrochloride (seized CH) samples. In the presence of LD, the OS presented a chromatic transition from blue to red, while no chromatic transition was observed for other typical cocaine adulterants or cocaine hydrochloride. Isothermal titration calorimetry analysis revealed specific interactions between the PDA molecules of the OS and the LD molecules, with these interactions being enthalpically favorable (-1.20 to -36.7 kJ mol-1). this website Therefore, the OS color change only occurred when LD was present in the sample, making the OS selective for LD. Consequently, LD was successfully detected in seized CH samples, irrespective of the type of adulteration. The OS was used for the quantification of LD in seized CH samples containing different adulterants, providing a linear range of 0.0959 to 0.225% (w/w), a precision of 7.2%, an accuracy ranging from -10 to 10%, and limits of detection and quantification of 0.0110% (w/w) and 0.0334% (w/w), respectively.The electrochemical reduction of CO2 stores intermittent renewable energy in valuable raw materials, such as chemicals and transportation fuels, while minimizing carbon emissions and promoting carbon-neutral cycles. Recent technoeconomic reports suggested economically feasible target products of CO2 electroreduction and the relative influence of key performance parameters such as faradaic efficiency (FE), current density, and overpotential in the practical industrial-scale applications. Furthermore, fundamental factors, such as available reaction pathways, shared intermediates, competing hydrogen evolution reaction, scaling relations of the intermediate binding energies, and CO2 mass transport limitations, should be considered in relation to the electrochemical CO2 reduction performance. Intensive research efforts have been devoted to designing and developing advanced electrocatalysts and improving mechanistic understanding. More recently, the research focus was extended to the catalyst environment, because the interfacial region can delicately modulate the catalytic activity and provide effective solutions to challenges that were not fully addressed in the material development studies. Herein, we discuss the importance of catalyst-electrolyte interfaces in improving key operational parameters based on kinetic equations. Furthermore, we extensively review previous studies on controlling organic modulators, electrolyte ions, electrode structures, as well as the three-phase boundary at the catalyst-electrolyte interface. The interfacial region modulates the electrocatalytic properties via electronic modification, intermediate stabilization, proton delivery regulation, catalyst structure modification, reactant concentration control, and mass transport regulation. We discuss the current understanding of the catalyst-electrolyte interface and its effect on the CO2 electroreduction activity.