• Clapp Guldborg posted an update 1 month, 3 weeks ago

    The emergence of the SARS-CoV-2 infection and its potential transmission through touching surfaces in clinical environments have impelled the use of conventional and novel methods of disinfection to prevent its spreading. Among the latter, pulsed light may be an effective, non-chemical decontamination alternative. Pulsed light technology inactivates microorganisms and viruses by using high intensity polychromatic light pulses, which degrades nucleic acids and proteins. This review describes this technology, compiles and critically analyzes the evidence about the virucidal efficacy of pulsed light technology with view on its potential use against SARS-CoV-2 in touching surfaces in health-care facilities. The efficacy of pulsed light proved against many different kind of viruses allows to conclude that is a suitable candidate to inactivate SARS-CoV-2 as long as the required fluence is applied and the appropriated exposure to contaminated surfaces is guaranteed.Photolyases are enzymes that repair DNA damage caused by solar radiation. Due to their photorepair potential, photolyases added in topical creams and used in medical treatments has allowed to reverse skin damage and prevent the development of different diseases, including actinic keratosis, premature photoaging and cancer. For this reason, research has been oriented to the study of new photolyases performing in extreme environments, where high doses of UV radiation may be a key factor for these enzymes to have perfected their photorepair potential. Generally, the extracted enzymes are first encapsulated and then added to the topical creams to increase their stability. However, other well consolidated immobilization methods are interesting strategies to be studied that may improve the biocatalyst performance. This review aims to go through the different Antarctic organisms that have exhibited photoreactivation activity, explaining the main mechanisms of photolyase DNA photorepair. The challenges of immobilizing these enzymes on porous and nanostructured supports is also discussed. The comparison of the most reported immobilization methods with respect to the structure of photolyases show that both covalent and ionic immobilization methods produced an increase in their stability. Moreover, the use of nanosized materials as photolyase support would permit the incorporation of the biocatalyst into the target cell, which is a technological requirement that photolyase based biocatalysts must fulfill.There has been a shift in the study of childhood adversity towards a focus on dimensions of adversity as opposed to a focus on cumulative risk or specific adversities. click here The Dimensional Model of Adversity and Psychopathology (DMAP) proposes deprivation and threat as core dimensions of childhood adversity. Previous work using DMAP has found links between deprivation and cognitive development and threat and emotional development in adolescence, but few studies have applied this framework to a poverty context, in which children are at heightened risk for adversity experiences, and none have examined outcomes in early childhood. We use data from the Family Life Project (n = 1292) to examine deprivation and threat at child age 24 months as developmental mediators in the association between socioeconomic status (SES) measured at 15 months and executive functions (EF) measured at 48 months. In a multiple mediation model, lower SES was related to higher deprivation and threat. Deprivation was negatively associated with EF, and threat was not associated with EF. Deprivation fully mediated association between SES and EF. These results expand previous work using the DMAP and point to new directions in understanding children’s cognitive adaptations to adversity.Many workflows and tools that aim to increase the reproducibility and replicability of research findings have been suggested. In this review, we discuss the opportunities that these efforts offer for the field of developmental cognitive neuroscience, in particular developmental neuroimaging. We focus on issues broadly related to statistical power and to flexibility and transparency in data analyses. Critical considerations relating to statistical power include challenges in recruitment and testing of young populations, how to increase the value of studies with small samples, and the opportunities and challenges related to working with large-scale datasets. Developmental studies involve challenges such as choices about age groupings, lifespan modelling, analyses of longitudinal changes, and data that can be processed and analyzed in a multitude of ways. Flexibility in data acquisition, analyses and description may thereby greatly impact results. We discuss methods for improving transparency in developmental neuroimaging, and how preregistration can improve methodological rigor. While outlining challenges and issues that may arise before, during, and after data collection, solutions and resources are highlighted aiding to overcome some of these. Since the number of useful tools and techniques is ever-growing, we highlight the fact that many practices can be implemented stepwise.Vaccination of neonatal pigs could be supportive to prevent porcine reproductive and respiratory syndrome virus (PRRSV), which is an important porcine pathogen causing worldwide welfare and health problems in pigs of different age classes. However, neonatal immunity substantially differs to adults, thus different vaccines may be required in neonateal pigs. We examined if the immunogenicity and efficacy of inactivated PRRSV (iPRRSV) vaccines in neonatal pigs could be improved with adjuvants containing oil-in water (O/W) emulsions with or without Toll-like receptor (TLR) agonists and by altering the delivery route from intramuscular (i.m.) to the skin. Three-day-old PRRSV-naïve piglets (n = 54, divided in 6 groups) received a prime vaccination and a booster vaccination four weeks later. The vaccine formulations consisted of different O/W emulsions (Montanide™ ISA28RVG (ISA28)), a squalene in water emulsion (SWE) for i.m. or a Stable Emulsion (SE) with squalene for skin vaccination) and/or a mixture of TLR1/2, 7/8 and 9 agonists (TLRa) combined with iPRRSV strain 07V063.