• Neal Rees posted an update 1 month, 2 weeks ago

    Underground pipeline safety is a concern among civilians in populated urban cities. Due to the potential for considerable damage from underground pipeline leakages, it is critical to identify potential risk areas. This study developed a simplified risk value using risk assessment software (ALOHA) and geography information systems (SuperGIS and Surfer) to produce potential risk maps for underground pipeline leakage in a major urban city. A risk assessment of areas affected by underground pipeline leakage was performed for vapor diffusion, thermal radiation from combustion, and overpressure from an explosion. The results are applicable to disaster management departments and agencies in highly populated cities.Despite the worldwide growth of class II and III obesity, the factors associated with type 2 diabetes mellitus (T2DM) in these obese individuals are not widely understood. Moreover, no study has investigated these associations in South America. Our study aimed to investigate the prevalence of T2DM and its associated factors, with an emphasis on biochemical parameters and eating habits, in class II and III obese individuals. We also aimed to analyze the correlation between glycemic parameters and body mass index (BMI). Baseline data from a randomized clinical trial (DieTBra Trial) of 150 class II and III obese individuals (BMI > 35 kg/m2) was used. An accelerometer, Food Frequency Questionnaire, and bioimpedance analysis were used to assess physical activity levels, eating habits, and body composition, respectively. Blood was collected after 12 h of fasting. Hierarchical multivariate Poisson regression was performed, and prevalence ratios (PRs) were calculated. Correlations between glycemic parameters (fasting blood glucose, glycosylated hemoglobin, homeostasis model assessment of insulin resistance (HOMA-IR), and insulin) and BMI were also analyzed. The prevalence of T2DM was 40.0% (95% CI, 32.1-48.3), high fasting blood glucose level was 19.33% (95% CI, 13.3-26.6), and high glycosylated hemoglobin was 32.67% (95% CI, 25.2-40.8). Age ≥ 50 years (PR = 3.17, 95% CI, 1.26-7.98) was significantly associated with T2DM; there was a positive linear trend between age and T2DM (p = 0.011). Multivariate analysis showed an association with educational level (PR = 1.49, 1.07-2.09, p = 0.018), nonconsumption of whole grains daily (PR = 1.67, 1.00-2.80, p = 0.049), and high HOMA-IR (PR = 1.54, 1.08-2.18, p = 0.016). We found a high prevalence of T2DM and no significant correlations between BMI and glycemic parameters.Whey protein isolate (WPI) is a by-product from the production of cheese and Greek yoghurt comprising β-lactoglobulin (β-lg) (75%). Hedgehog antagonist Hydrogels can be produced from WPI solutions through heating; hydrogels can be sterilized by autoclaving. WPI hydrogels have shown cytocompatibility and ability to enhance proliferation and osteogenic differentiation of bone-forming cells. Hence, they have promise in the area of bone tissue regeneration. In contrast to commonly used ceramic minerals for bone regeneration, a major advantage of hydrogels is the ease of their modification by incorporating biologically active substances such as enzymes. Calcium carbonate (CaCO3) is the main inorganic component of the exoskeletons of marine invertebrates. Two polymorphs of CaCO3, calcite and aragonite, have shown the ability to promote bone regeneration. Other authors have reported that the addition of magnesium to inorganic phases has a beneficial effect on bone-forming cell growth. In this study, we employed a biomimetic, marine-inspired approach to mineralize WPI hydrogels with an inorganic phase consisting of CaCO3 (mainly calcite) and CaCO3 enriched with magnesium using the calcifying enzyme urease. The novelty of this study lies in both the enzymatic mineralization of WPI hydrogels and enrichment of the mineral with magnesium. Calcium was incorporated into the mineral formed to a greater extent than magnesium. Increasing the concentration of magnesium in the mineralization medium led to a reduction in the amount and crystallinity of the mineral formed. Biological studies revealed that mineralized and unmineralized hydrogels were not cytotoxic and promoted cell viability to comparable extents (approximately 74% of standard tissue culture polystyrene). The presence of magnesium in the mineral formed had no adverse effect on cell viability. In short, WPI hydrogels, both unmineralized and mineralized with CaCO3 and magnesium-enriched CaCO3, show potential as biomaterials for bone regeneration.An evaluation of fraction composition and transformation of metal compounds emitted by metal ore processing enterprises and accumulated in soils is crucial for assessing the environmental risks of pollution and ecosystem benefit of remediation. The aim of this study was to develop a suitable sequential fractional procedure for metal pollutants for the peat soils matrix in the impact zone of a Cu-Ni smelter. Three experiment series were performed (a) the study of the effect of ammonium acetate buffer pH in the range of 3.7-7.8 on the soil metal extraction; (b) the study of the effect of additional volume and frequency of soil treatment with solutions on the content of water-soluble, ammonium acetate extractable, and 0.1 N HNO3 extractable fractions; and, (c) the determination of the metal fraction composition in the modified technique. Soil treatment with ammonium acetate buffer with a pH range of 4.5-5.5 was the most appropriate for the determination of mobile compounds of Cu and other metals in highly polluted peat soil. Triple soil treatment with water and ammonium acetate is necessary for the complete extraction of the water-soluble and exchangeable fractions, respectively. Additionally, we propose a procedure of full extraction of the exchangeable metal fraction from peat soils while using single treatment with 0.1 N HNO3. This scheme allows evaluating geochemical mobility of metals and current environmental harm of polluted soils with a high content of organic matter.Besides giving rise to oligodendrocytes (the only myelin-forming cell in the Central Nervous System (CNS) in physiological conditions), Oligodendrocyte Precursor Cells (OPCs) are responsible for spontaneous remyelination after a demyelinating lesion. They are present along the mouse and human CNS, both during development and in adulthood, yet how OPC physiological behavior is modified throughout life is not fully understood. The activity of adult human OPCs is still particularly unexplored. Significantly, most of the molecules involved in OPC-mediated remyelination are also involved in their development, a phenomenon that may be clinically relevant. In the present article, we have compared the intrinsic properties of OPCs isolated from the cerebral cortex of neonatal, postnatal and adult mice, as well as those recovered from neurosurgical adult human cerebral cortex tissue. By analyzing intact OPCs for the first time with 1H High Resolution Magic Angle Spinning Nuclear Magnetic Resonance (1H HR-MAS NMR) spectroscopy, we show that these cells behave distinctly and that they have different metabolic patterns in function for their stage of maturity.