• Holloway McLeod posted an update 1 month, 2 weeks ago

    Only three studies were theory informed and the standard of reporting across all studies requires substantial improvement. However, the majority of studies reported changes in athletes’ dietary behaviour post-intervention. This review highlights an absence of evidence-informed approaches defining the professional practice of sports nutrition and illuminates a limited application of BCTs within the sports nutrition field. Consequently, the authors provide a framework and guide for intervention development to increase rigour and effectiveness of future sports nutrition interventions. PROSPERO registration number CRD42018072283. WRKY transcription factors have been suggested to play important roles in response and adaptation to drought stress. However, how sorghum WRKY transcription factors function in drought stress is still unclear. Here, we identify a WRKY transcription factor of sorghum, SbWRKY30, which is induced significantly by drought stress. SbWRKY30 is mainly expressed in sorghum taproot and leaf. SbWRKY30 has transcriptional activation activity and functions in the nucleus. Heterologous expression of SbWRKY30 confers tolerance to drought stress in Arabidopsis (Arabidopsis thaliana) and rice by affecting root architecture. In addition, SbWRKY30 transgenic Arabidopsis and rice plants have higher proline contents and SOD, POD, and CAT activities but lower MDA contents than wild-type plants after drought stress. As a homologous gene of the drought stress-responsive gene RD19 of Arabidopsis, SbRD19 overexpression in Arabidopsis improved the drought tolerance of plants relative to wild-type plants. Further analysis demonstrated that SbWRKY30 could induce SbRD19 expression through binding to the W-box element in the promoter of SbRD19. These results suggest that SbWRKY30 functions as a positive regulator in response to drought stress. Therefore, SbWRKY30 may serve as a promising candidate gene for molecular breeding to generate drought-tolerant crops. NH4+ is not only the primary nitrogen for rice, a well-known NH4+ specialist, but is also the chief limiting factor for its production. Limiting NH4+ triggers a series of physiological and biochemical responses that help rice optimise its nitrogen acquisition. However, the dynamic nature and spatial distribution of the adjustments at the whole plant level during this response are still unknown. Here, nitrogen-starved rice seedlings were treated with 0.1 mM (NH4)2SO4 for 4 or 12 h, and then the shoots and roots were harvested for RNA-Seq analysis. We identified 138 and 815 differentially expressed genes (DEGs) in shoots, and 597 and 1074 in roots following 4 and 12 h treatment, respectively. Up-regulated DEGs mainly participated in phenylpropanoid, sugar, and amino acid metabolism, which was confirmed by chemical content analysis. The transcription factor OsJAZ9 was the most pronouncedly induced component under low NH4+ in roots, and a significant increase in root growth, NH4+ absorption, amino acid, and sugar metabolism in response to resupplied NH4+ following nitrogen starvation was identified in JAZ9ox (OsJAZ9-overexpressed) and coi1 (OsCOI1-RNAi). Our data provide comprehensive insight into the whole-plant transcriptomic response in terms of metabolic processes and signaling transduction to a low-NH4+ signal, and identify the transcription factor OsJAZ9 and its involvement in the regulation of carbon/nitrogen metabolism as central to the response to low NH4+. The degradation of enrofloxacin (ENR) by direct photolysis, Fenton and solar photo-Fenton processes has been studied in different water matrices, such as ultra-pure water (MQ), tap water (TW) and highly saline water (SW). Reactions have been conducted at initial pH 2.8 and 5.0. At pH = 2.8, HPLC analyses showed a fast removal of ENR by (solar photo)-Fenton treatments in all studied water matrices, whereas a 40% removal was observed after 120 min of photolysis. However, TOC measurements showed that only solar photo-Fenton was able to produce significant mineralization (80% after 120 min of treatment); differences between ENR removal and mineralization can be attributed to the release of important amounts of reaction by-products. Excitation-emission matrices (EEMs) combined with parallel factor analysis (PARAFAC) were employed to gain further insight into the nature of these by-products and their time-course profile, obtaining a 5-component model. EEM-PARAFAC results indicated that photolysis is not able to produce important changes in the fluoroquinolone structure, in sharp contrast with (solar photo)-Fenton, where decrease of the components associated with fluoroquinolone core was observed. Agar diffusion tests employing E. coli and S, aureus showed that the antibiotic activity decreased in parallel with the destruction of the fluoroquinolone core. A primary school was investigated for airborne fungi by a culture-based method, in classrooms underneath a green roof in comparison to conventional concrete roofs. A portable Burkard sampler was used for the collection of air samples onto petri dishes with 2% Malt Extract Agar. The fungal aerosol mean concentration was 71 CFU m-3 (range 17-176 CFU m-3, median 51) in the classroom directly under the green roof, significantly lower than 192-228 CFU m-3 (range 0-1090 CFU m-3, median 69) under the concrete roofs and 188-412 CFU m-3 (range 0-2183 CFU m-3, median 771) in ground floor classrooms. The Indoor/Outdoor ratio was 0.4 for total fungi and 0.2-1.1 for predominant genera underneath the green roof, whereas 1-2.1 and 0.3-3.2 respectively for the rest of classrooms. The Potential Exposure Dose (PED) for fungal particles was calculated to 4.6 CFU kg-1 and 9.3-35.3 CFU kg-1 respectively. The genera Penicillium, Cladosporium and Aspergillus prevailed indoors and in ambient air. Aspergillus concentrations indoors correlated significantly with the concentration of the coarse fraction (PM10) of particulate matter. PI3K inhibitor The genus Penicillium increased indoors during late spring and summer, in temperature 20-23 °C and relative humidity 42-53% and also predominated in ambient air, both indicative of multiple anthropogenic sources of amplification. The evidence about the green roof positive effect on microbial indoor air quality (mIAQ) is a matter of concern for further investigation.