• Staal Boyle posted an update 1 month, 2 weeks ago

    The bulky DPAs also show excellent stability under UV irradiation with exposure to oxygen compared to DPA. These results provide a strategy for developing efficient solid-state TF-UC systems based on nano/micro-particles of emitter-sensitizer mixtures.The low-temperature defect chemistry of monoclinic and tetragonal ZrO2 and hematite Fe2O3 is studied in the non-equilibrium state of thermochemical quenching; that is, rapid cooling starting from a certain high temperature and oxygen chemical potential. This non-equilibrium state is of great interest because many metal oxides are used at low temperatures below their growth temperatures. This paper addresses the importance of considering this non-equilibrium state rather than applying equilibrium thermodynamics as commonly used when studying point defects from first principles. Based on point defect formation energies calculated previously using density functional theory, we compare the type of dominant defects at equilibrium to those at a quenched state originating from a certain initial growth temperature and oxygen partial pressure. The comparison is facilitated by casting the dominant defects in a dominance diagram on the temperature – oxygen partial pressure plane. We consider two scenarios to model the qthe band gap by quenching. This provides an extra tool to tune the electric conductivity of metal oxides beyond traditional extrinsic doping. This work indicates that non-equilibrium thermodynamic analysis is necessary to understand and control defect chemistry at low temperatures.The unique physical and chemical properties of β12-borophene stem from the coexistence of the Dirac and triplet fermions. The metallic phase of β12-borophene transitions to the semiconducting one when it is subjected to a perpendicular electric field or bias voltage. In this work, with the aid of a five-band tight-binding Hamiltonian, the Green’s function approach and the Kubo-Greenwood formalism, the electronic thermal conductivity (ETC) of the semiconducting phase of β12-borophene is studied. Two homogeneous (H) and inversion symmetric (IS) models are considered depending on the interaction of the substrate and boron atoms. In addition, due to the anisotropic structure of β12-borophene, the swapping effect of bias poles is addressed. First of all, we find the pristine ETCIS less then ETCH independent of the temperature. Furthermore, a decrease of 74.45% (80.62%) is observed for ETCH (ETCIS) when strong positive bias voltages are applied, while this is 25.2% (47.48%) when applying strong negative bias voltages. Moreover, the shoulder temperature of both models increases (fluctuates) with the positive (negative) bias voltage. Our numerical results pave the way for setting up future experimental thermoelectric devices in order to achieve the highest performance.Nanoparticles are being explored for topical and oral drug delivery applications as they can cross various biological barriers, for example, the intestinal epithelium. The ability of nanoparticles to cross barriers depends on their morphological and surface properties such as size, surface chemistry and shape, among others. The effect of nanoparticle size on their membrane permeability has been well studied both experimentally and theoretically. However, less attention has been given to understand the role of nanoparticle shape in their translocation across biological barrier membranes. Here, we report on the influence of the nanoparticle’s shape, surface chemistry and concentration on their permeation across a human intestinal apical cell membrane model. A representative multicomponent lipid bilayer model of the human intestinal apical membrane was built. The free energy of permeation of nanoparticles across the model lipid bilayer was calculated using multiple umbrella sampling simulations. selleck chemicals llc The interaction therapeutic protein inside the lipid layer. The apical model lipid membrane and protocols used in this study can thus be utilized for the in silico design of nanoparticles for the oral delivery of therapeutics.Skin gas that contains volatile metabolites (volatilome) is emanated continuously and is thus expected to be suitable for non-invasive monitoring. The aim of this study was to investigate the relationship between the regional difference of sweat rate and skin volatilome distribution to identify the suitable site to monitor metabolisms. In this study, we developed a biofluorometric gas-imaging system (sniff-cam) based on nicotinamide adenine dinucleotide (NAD)-dependent alcohol dehydrogenase (ADH) to visualize transcutaneous ethanol (EtOH) distribution. The EtOH distribution was converted to a fluorescence distribution of reduced NAD with autofluorescence property. First, we optimized the solution volume and concentration of the oxidized NAD, which was a coenzyme of ADH. Owing to the optimization, a two-dimensional distribution of EtOH could be visualized from 0.05-10 ppm with good sensitivity and selectivity. Subsequently, transcutaneous EtOH imaging and measurement of sweat rate were performed at the palm, dorsum of hand, and wrist of participants who consumed alcohol. Transcutaneous EtOH from all skin parts was imaged using the sniff-cam; the concentrations initially increased until 30 min after drinking, followed by a gradual decrease. Although the determined peak EtOH concentrations of typical subjects were approximately 1100 ± 35 ppb (palm), which were higher than 720 ± 18 ppb (dorsum) and 620 ± 13 ppb (wrist), the results of sweat rate suggested that the dorsum of hand and the wrist were appropriate sites. Finally, the sniff-cam could visualize the individual difference of alcohol metabolism capacity originating from aldehyde dehydrogenase phenotype by imaging transcutaneous EtOH.The relationship between the crystallization process and opto-electronic properties of silicon quantum dots (Si QDs) synthesized by atmospheric pressure plasmas (APPs) is studied in this work. The synthesis of Si QDs is carried out by flowing silane as a gas precursor in a plasma confined to a submillimeter space. Experimental conditions are adjusted to propitiate the crystallization of the Si QDs and produce QDs with both amorphous and crystalline character. In all cases, the Si QDs present a well-defined mean particle size in the range of 1.5-5.5 nm. Si QDs present optical bandgaps between 2.3 eV and 2.5 eV, which are affected by quantum confinement. Plasma parameters evaluated using optical emission spectroscopy are then used as inputs for a collisional plasma model, whose calculations yield the surface temperature of the Si QDs within the plasma, justifying the crystallization behavior under certain experimental conditions. We measure the ultraviolet-visible optical properties and electronic properties through various techniques, build an energy level diagram for the valence electrons region as a function of the crystallinity of the QDs, and finally discuss the integration of these as active layers of all-inorganic solar cells.