-
Boll Anker posted an update 1 month, 2 weeks ago
Under predicted climate change scenarios many parts of the world will be hotter. Higher temperature extremes present significant physiological challenges to ectothermic freshwater species that cannot regulate body temperature. Willows (Salix spp.) are highly invasive deciduous northern hemisphere shrubs and trees that have colonised riparian zones of southern hemisphere streams. Non-native willows are criticised for their high consumption of water and their capacity to form dense monostands along the margins and within waterways that limit light to streams in summer, alter the timing and quality of allochthonous inputs and modify ecosystem function. As such, governments invest heavily in the removal of willows from streams in order to preserve ecosystem integrity. Although detrimental effects of non-native willows are well documented, little attention has been focussed on consideration of potential ecosystem services that non-native willow infestation may provide under predicted climate warming. Here, we use a case study to illustrate that shading by non-native willows can provide thermal refugia for temperature sensitive endemic taxa and we provide a holistic approach to non-native willow removal that may provide benefits to aquatic species amid changing climate. We present a simple decision matrix for prioritising willow removal activities that may be applied to other invasive species and we discuss traditional views of invasive species management and river restoration and their relevance in a rapidly warming world. The concepts we discuss are of immediate relevance to environmental managers challenged with maintaining and restoring ecosystems that are rapidly changing in structure and function in response to climate warming.Phenology has been regarded as an essential bio-indicator of climate change widely. Quantifying the crop phenological changes caused by climate change and anthropogenic-management practices can help formulate effective climate change adaptation strategies. In this study, the effects of climate change and anthropogenic-management practices on maize phenology (spring, summer, and intercropping maize) in China were distinguished based on historical meteorological and phenological data (1981-2010) of 114 stations using the first-order difference regression method. Our results show (1) The vegetative growing period of spring and intercropping maize was extended, whereas that of summer maize was shortened. The reproductive growing periods of spring, summer, and intercropping maize were extended. (2) Isolated impacts of climate change shortened the vegetative growing period of spring maize, summer maize, and intercropping maize by 0.19, 1.06, and 3.12 d decade-1, respectively, while the reproductive growing period was extended by 0.19, 0.74, and 3.47 d decade-1, respectively. (3) The contribution of temperature to maize phenology was greater in the northwest inland maize zone and north spring maize zone than in other regions, whereas the contribution of sunshine hours was higher in Huang-Huai Plain intercropping maize zone and the southwest mountain hills maize zone. (4) The effects of anthropogenic-management practices on maize phenological stages such as sowing, emergence, and maturity were generally greater than that of climate change, which has delayed the phenological stages of summer and intercropping maize and extended the growing period of spring maize. The focus should be paid to the emergence, jointing, and milky stages to increase the water use efficiency in the northwest inland maize zone. The findings provide a scientific basis for improving the adaptability of agricultural systems in climate change.The previous literature presents conflicting outcomes on the relationship between financial development and CO2 emissions. This study fixes this puzzle by testing both the direct and indirect effects of financial development on environmental pollution using Environmental Kuznets Curve (EKC) framework. Our empirical investigation relies upon difference and system generalized method of moments for a large sample of 88 developing countries during 2000-2014 period. The estimated outcomes, based on five different indicators of financial development, support the pollution inhibiting role of financial development for the selected countries. We also validate the existence of EKC hypothesis for the panel of economies. RHPS 4 More importantly, the results of the indirect channels show that financial development also reduces the adverse effects of income, trade openness and FDI on the pollution emissions. Further, the validity of pollution heaven hypothesis (PHH), tested through trade openness and FDI variables, is also contingent upon the existence of weak financial structure. When financial development traverses certain limits, PHH ceases to exist for both these variables. Lastly, population size augments pollution emissions while human capital reduces the later. Based on these results, we propose some very important policy implications for the sample economies.In households, municipal solid waste (MSW) is often burned along with wood to get rid of waste, to help in ignition or simply to reduce fuel costs. The aim of this study was to characterize the influence of household waste combustion, along with wood, on the physical and chemical properties of particulate emissions in a flue gas of a masonry heater. The MSW burning alongside wood increased average particulate matter (PM) mass (65%), lung deposited surface areas (LDSA, 15%), black carbon (BC, 65%) concentrations and the average particle size in the flue gas. The influence of MSW was smaller during ignition and burning phases, but especially during fuel additions, the mass, number, and LDSA concentrations increased significantly and their size distributions moved towards larger particles. For wood burning the trace metal emissions were relatively low, but significant increase (3.3-179 -fold increase over cycle) was seen when MSW was burned along the wood. High ratios were observed especially during fuel addition phases but, depending on compounds, also during ignition and burning end phases. The highest ratios were observed for chloride compounds (HCl, KCl, NaCl). The observed increase in light-absorbing particle, trace metal and BC concentrations in flue gas when adding wood with MSW are likely to have negative impacts on air quality, visibility, human health and climate. Furthermore, metals may also affect the condition and lifetime of the burning device due to corrosion.