-
Valentin Lancaster posted an update 1 month, 2 weeks ago
The impact of extrusion at different barrel temperature and screw speed on the hempseed hull was investigated. The extrusion treatments showed significant (p less then 0.05) increase in total phenolic content, proportion of free phenolic compounds, and DPPH and ABTS radical scavenging activities. At low screw speed (150 rpm), significantly (p less then 0.05) higher α-glucosidase and acetylcholinesterase inhibition activities were observed in the extruded samples. The full factorial model revealed a significant interaction between extrusion parameters on total phenolic/flavonoid content and antioxidant activities for free fraction, and α-glucosidase and acetylcholinesterase inhibition for whole fraction. A total of 26 phenylpropionamides, including hydroxycinnamic acid amides and lignanamides, were identified by HPLC-ESI-QTOF-MS/MS. HPLC-DAD analysis showed a 25-78% increase in total phenylpropionamide content in hempseed hull after extrusion. Pearson’s correlation displayed significant (p less then 0.05) positive correlation of N-trans-caffeoyltyramine, the most abundant phenylpropionamide, with all biological activities (r = 0.832-0.940).Plant tissues exhibit a symplasmic organization; the individual protoplasts are connected to their neighbors via cytoplasmic bridges that extend through pores in the cell walls. These bridges may have diameters of a micrometer or more, as in the sieve pores of the phloem, but in most cell types they are smaller. Historically, botanists referred to cytoplasmic bridges of all sizes as plasmodesmata. The meaning of the term began to shift when the transmission electron microscope (TEM) became the preferred tool for studying these structures. Today, a plasmodesma is widely understood to be a ‘nano-scale’ pore. Unfortunately, our understanding of these nanoscopic channels suffers from methodological limitations. This is exemplified by the fact that state-of-the-art EM techniques appear to reveal plasmodesmal pore structures that are much smaller than the tracer molecules known to diffuse through these pores. In general, transport processes in pores that have dimensions in the size range of the transported molecules are governed by different physical parameters than transport process in the macroscopic realm. This can lead to unexpected effects, as experience in nanofluidic technologies demonstrates. Our discussion of problems of size in plasmodesma research leads us to conclude that the field will benefit from technomimetic reasoning – the utilization of concepts developed in applied nanofluidics for the interpretation of biological systems.Phosphorus is an essential nutrient for plants that is often in short supply. In rice (Oryza sativa L.), inorganic phosphate (Pi) deficiency leads to various physiological disorders that consequently affect plant productivity. In this study, a large-scale phenotyping experiment using 160 Vietnamese rice landraces was performed under greenhouse conditions, by employing an alpha lattice design with three replicates, to identify quantitative trait loci (QTLs) associated with plant growth inhibition caused by Pi deficiency. Rice plantlets were grown for six weeks in the PVC sand column (16 cm diameter × 80 cm height) supplied with Pi-deficient medium (10 μM P) or full-Pi Yoshida medium (320 μM P). The effects of Pi deficiency on the number of crown roots, root length, shoot length, root weight, shoot weight and total weight were studied. From 36 significant markers identified using a genome-wide association study, 21 QTLs associated with plant growth inhibition under Pi starvation were defined. In total, 158 candidate genes co-located with the defined QTLs were identified. Interestingly, one QTL (qRST9.14) was associated with all three weight-traits. VLS-1488 The co-located gene GLYCEROPHOSPHODIESTER PHOSPHODIESTERASE 13 was found to be potentially involved in Pi transport. Understanding the molecular mechanisms of Pi-starvation responses, and identifying the potential QTLs responsible for low-Pi stress tolerance, will provide valuable information for developing new varieties tolerant of low-Pi conditions.Plant physiology and development essentially depend on sufficient uptake of various essential nutritive ions via their roots and their appropriate transport and distribution within the organism. Many of these essential nutrients are heterogeneously distributed in the soil or are available in fluctuating concentrations. This natural situation requires constant regulatory adjustment and balancing of nutrient uptake and homeostasis. Here, we review recent findings on the role of Ca2+ signals and Ca2+-dependent regulation via the CBL-CIPK Ca2+ sensor-protein kinase network in these processes. We put special emphasis on Ca2+ controlled processes that contribute to establishing the homeostasis of macro-nutrients like potassium (K+), nitrogen (N), and magnesium (Mg2+) and on the micro-nutrient iron (Fe). Increasing experimental evidence indicates the occurrence of nutrient-specific, spatially and temporally defined cytoplasmic Ca2+ elevations as early responses to nutrient fluctuations. Specific CBL-CIPK complexes translate these signals into phosphorylation regulation of important channels and transporters like AKT1, NPF6.3/NRT1.1, AMT1, SLAC1, TPK1 and IRT1. We discuss a crucial and coordinating role for these Ca2+ signaling mechanisms in regulating the sensing, uptake, distribution and storage of various ions. Finally, we reflect on the emerging multifaceted and potentially integrating role of the “nutrient” kinase CIPK23 in regulating multiple nutrient responses. From this inventory, we finally deduce potential mechanisms that can convey the coordinated regulation of distinct steps in the transport of one individual ion and mechanisms that can bring about the integration of adaptive responses to fluctuations of different ions to establish a faithfully balanced plant nutrient homeostasis.
Clinical outcome assessment (COA) is an important instrument for testing the effectiveness of treatments and for supporting healthcare professionals on decision-making. This review aims to assess the use of COAs, and the evaluation time points of motor status in patients with brain tumor (BT) undergoing surgery.
We performed a scoping review through MEDLINE, EMBASE, and LILACS databases, looking for original studies in primary or secondary BT, having motor function status as the primary outcome.
mixed sample, BT recurrence, and an unspecific description of motor deficits evaluation.
Nine studies met the eligibility criteria. There were 449 patients assessed. A total of 18 scales evaluated these BT patients, 12 performance outcomes measures (PerfO) tested motor function. Four scales were the clinician-reported outcome measures (ClinRO) found in this review, two assessed performance status, and two rated ambulation. Two patient-reported outcome measures (PRO) appraised functionality.
A variety of instruments were used to assess BT patients.