-
Downey Hodge posted an update 6 hours, 34 minutes ago
The effects of NaHS were completely offset by HT addition. The results suggested that exogenous H2S could alleviate the oxidative damage on stigma and ovary stress through decreasing H2O2 accumulation, regulating mitochondria antioxidant system, increasing H+-ATPase activity, and mitigating mitochondria function under low temperature.In this study, the Beta regression models of sapwood, heartwood, and bark density of Larix olgensis were constructed. A total of 35 trees were destructively sampled from plantations in three different sites, Linkou Forestry Bureau of Heilongjiang Province, Dongjingcheng Forestry Bureau, and Maoershan Experimental Forest Farm of Northeast Forestry University. AIC, R2, BIAS, RMSE and LRT were used as the goodness-of-fit statistics to compare and select the most optimal models for sapwood, heartwood, and bark density. The jackknife resampling technique was used to verify and evaluate the developed models. The results showed that the independent variables of the optimal sapwood, heartwood, and bark density model were not identical. Sapwood density had a good relationship with tree age, tree height, relative height, and the square of relative height. The independent variables of the optimal heartwood density model were annual growth, relative height, and the square of relative height. The independent variables of the optimal bark density model were tree age, annual growth, relative height, and the square of relative height. DNA Damage inhibitor The analysis of the optimal model showed that from the base to the tip of the trunk, sapwood density decreased gradually, heartwood density initially decreased and then increased regularly, bark density initially increased and then decreased gradually. The established Beta regression models could predict sapwood, heartwood, and bark density of L. olgensis at any position in the research area and be an essential basis for the study of trunk average density and biomass.Solanum rostratum is a severely invasive alien plant species in China. Using four S. rostratum populations and non-invasive congener S. americanum, we conducted a common garden experiment to compare their breeding systems. No significant difference in average seed set between the two species under open pollination and supplementary pollination conditions. However, under the bagged self-pollination condition, S. rostratum had significantly lower average seed set (29.5%) than S. americanum (47.0%). No fertile seeds were detected in the emasculation treatments for both species, suggesting no autonomous apomixis in them. S. rostratum had a lower average autofertility index (0.38) than S. americanum (0.64). S. rostratum had higher average pollen limitation index (0.29) and average pollinator’s contribution index (0.49) than S. americanum (0.08 and 0.31, respectively). S. rostratum was found in 12 provinces of China and in 3835 locations globally, which were lower than S. americanum with 18 Chinese provinces and 10897 locations globally. The invasive alien S. rostratum had lower self-compatibility than the non-invasive alien S. americanum. Thus, the invasiveness of those two species was not significantly correlated with their self-compatibility, but positively correlated with their distribution range.Through field survey and laboratory analysis, we examined the composition and fractal features of soil micro-aggregates in different types of treefall gaps and microsites (pit bottom and mound top) in broad-leaved Korean pine forest and spruce-fir-Korean pine forest. Results showed that the contents of soil microaggregates under the classes of 0.25-2 mm and 0.05-0.25 mm were higher in both forest types, ranging from 25.7% to 50.7% and from 27.0% to 42.8%, respectively, and that of less then 0.002 mm was the lowest, ranging from 4.4% to 8.9%. In the pit bottom and mound top of gaps, soil bulk density was higher in both forest types. Soil nutrient content in mound top was higher than that in pit bottom and was higher in broad-leaved Korean pine forest than spruce-fir-Korean pine forest. Soil microaggregates of less then 0.002 mm had no correlation with soil physical and chemical properties, whereas that of 0.25-2 mm and 0.002-0.02 mm had significantly positive and negative correlation with soil non-capillary porosity, total porosity, aeration porosity, organic matter, total phosphorus, total nitrogen and organic carbon, respectively. On the whole, soil fractal dimension (D) and the proportion of characteristic soil micro-aggregates (PCM) in broad-leaved Korean pine forest were larger than those in spruce-fir-Korean pine forest, and the ratio of soil microaggregates diameter (RMD) in mound top and pit bottom was increased in two forest types. Soil D and PCM had no significant correlation with soil physical and chemical properties, while RMD was negatively correlated with capillary porosity, total porosity, soil bulk density and aeration porosity. In two forest types, the formation of mound and pit microsites could decrease the larger size micro-aggregates and the stability of soil micro-aggregate, increase soil D and PCM, and signifi-cantly increase RMD. RMD could be used as a quantitative index of soil physical and chemical properties in pit and mound microsites of forest.Phosphorus (P) limitation is one of the major issues for the management of subtropical plantations. Understanding the effects of tree species transition from conifer to broadleaved trees on soil P fraction and availability in different soil layers are of great significance for the sustainable development of subtropical forests. We compared changes in soil chemical properties, P fraction and availability across 0-100 cm soil profile between Mytilaria laosensis and Cunninghamia lanceolata plantations, which were initially reforested from C. lanceolata plantation in the spring of 1993. The results showed that soil organic P content in both plantations decreased significantly with soil depth. Compared with C. lanceolata, the M. laosensis plantation significantly increased soil available P content by 35.7% and 86.2% in the 0-10 and 10-20 cm, respectively. The contents of soil labile P and moderately labile P decreased significantly with soil depth in both plantations. The contents of labile P and moderately labile P were significantly higher in the surface soil (0-20 cm), while the non-labile P in the 80-100 cm was increased by 13.