• Langhoff Bryan posted an update 6 hours, 39 minutes ago

    The authors then present a system that uses an adaptive process to maximize its ability to hear relevant audio events, and which establishes its own definition for context-dependent dynamics for situations involving music technologies. The authors also describe a generative program that uses these context-dependent dynamic systems in conjunction with a Markov model culled from a living performer-composer as a choice engine for new music improvisations.Biomass and yield are key variables for assessing the production and performance of agricultural systems. Modeling and predicting the biomass and yield of individual plants at the farm scale represents a major challenge in precision agriculture, particularly when salinity and other abiotic stresses may play a role. Here, we evaluate a diversity panel of the wild tomato species (Solanum pimpinellifolium) through both field and unmanned aerial vehicle (UAV)-based phenotyping of 600 control and 600 salt-treated plants. The study objective was to predict fresh shoot mass, tomato fruit numbers, and yield mass at harvest based on a range of variables derived from the UAV imagery. UAV-based red-green-blue (RGB) imageries collected 1, 2, 4, 6, 7, and 8 weeks before harvest were also used to determine if prediction accuracies varied between control and salt-treated plants. Multispectral UAV-based imagery was also collected 1 and 2 weeks prior to harvest to further explore predictive insights. In order to estimate the that it is possible to predict the average biomass and yield up to 8 weeks prior to harvest within 4.23% of field-based measurements and up to 4 weeks prior to harvest at the individual plant level. Results from this work may be useful in providing guidance for yield forecasting of healthy and salt-stressed tomato plants, which in turn may inform growing practices, logistical planning, and sales operations.The paper proposes an explainable AI model that can be used in fintech risk management and, in particular, in measuring the risks that arise when credit is borrowed employing peer to peer lending platforms. The model employs Shapley values, so that AI predictions are interpreted according to the underlying explanatory variables. The empirical analysis of 15,000 small and medium companies asking for peer to peer lending credit reveals that both risky and not risky borrowers can be grouped according to a set of similar financial characteristics, which can be employed to explain and understand their credit score and, therefore, to predict their future behavior.Machine learning (ML) and artificial intelligence (AI) algorithms are now being used to automate the discovery of physics principles and governing equations from measurement data alone. However, positing a universal physical law from data is challenging without simultaneously proposing an accompanying discrepancy model to account for the inevitable mismatch between theory and measurements. By revisiting the classic problem of modeling falling objects of different size and mass, we highlight a number of nuanced issues that must be addressed by modern data-driven methods for automated physics discovery. Specifically, we show that measurement noise and complex secondary physical mechanisms, like unsteady fluid drag forces, can obscure the underlying law of gravitation, leading to an erroneous model. We use the sparse identification of non-linear dynamics (SINDy) method to identify governing equations for real-world measurement data and simulated trajectories. Incorporating into SINDy the assumption that each falling object is governed by a similar physical law is shown to improve the robustness of the learned models, but discrepancies between the predictions and observations persist due to subtleties in drag dynamics. This work highlights the fact that the naive application of ML/AI will generally be insufficient to infer universal physical laws without further modification.Deep neural networks have been successfully applied in learning the board games Go, chess, and shogi without prior knowledge by making use of reinforcement learning. Although starting from zero knowledge has been shown to yield impressive results, it is associated with high computationally costs especially for complex games. With this paper, we present CrazyAra which is a neural network based engine solely trained in supervised manner for the chess variant crazyhouse. Crazyhouse is a game with a higher branching factor than chess and there is only limited data of lower quality available compared to AlphaGo. Therefore, we focus on improving efficiency in multiple aspects while relying on low computational resources. These improvements include modifications in the neural network design and training configuration, the introduction of a data normalization step and a more sample efficient Monte-Carlo tree search which has a lower chance to blunder. After training on 569537 human games for 1.5 days we achieve a move prediction accuracy of 60.4%. During development, versions of CrazyAra played professional human players. check details Most notably, CrazyAra achieved a four to one win over 2017 crazyhouse world champion Justin Tan (aka LM Jann Lee) who is more than 400 Elo higher rated compared to the average player in our training set. Furthermore, we test the playing strength of CrazyAra on CPU against all participants of the second Crazyhouse Computer Championships 2017, winning against twelve of the thirteen participants. Finally, for CrazyAraFish we continue training our model on generated engine games. In 10 long-time control matches playing Stockfish 10, CrazyAraFish wins three games and draws one out of 10 matches.Neurodegenerative diseases such as Alzheimer’s and Parkinson’s impact millions of people worldwide. Early diagnosis has proven to greatly increase the chances of slowing down the diseases’ progression. Correct diagnosis often relies on the analysis of large amounts of patient data, and thus lends itself well to support from machine learning algorithms, which are able to learn from past diagnosis and see clearly through the complex interactions of a patient’s symptoms and data. Unfortunately, many contemporary machine learning techniques fail to reveal details about how they reach their conclusions, a property considered fundamental when providing a diagnosis. Here we introduce our Personalisable Clinical Decision Support System (PECLIDES), an algorithmic process formulated to address this specific fault in diagnosis detection. PECLIDES provides a clear insight into the decision-making process leading to a diagnosis, making it a gray box model. Our algorithm enriches the fundamental work of Masheyekhi and Gras in data integration, personal medicine, usability, visualization, and interactivity.