• Winstead Beebe posted an update 7 hours, 10 minutes ago

    BACKGROUND Deoxyxylulose 5-phosphate synthase (DXS) and deoxyxylulose 5-phosphate reductoisomerase (DXR) are the enzymes that catalyze the first two enzyme steps of the methylerythritol 4-phosphate (MEP) pathway to supply the isoprene building-blocks of carotenoids. Plant DXR and DXS enzymes have been reported to function differently depending on the plant species. In this study, the differential roles of rice DXS and DXR genes in carotenoid metabolism were investigated. RESULTS The accumulation of carotenoids in rice seeds co-expressing OsDXS2 and stPAC was largely enhanced by 3.4-fold relative to the stPAC seeds and 315.3-fold relative to non-transgenic (NT) seeds, while the overexpression of each OsDXS2 or OsDXR caused no positive effect on the accumulation of either carotenoids or chlorophylls in leaves and seeds, suggesting that OsDXS2 functions as a rate-limiting enzyme supplying IPP/DMAPPs to seed carotenoid metabolism, but OsDXR doesn’t in either leaves or seeds. The expressions of OsDXS1, OsPSY1, OsPle as a rate-limiting enzyme supplying IPP/DMAPPs to the seed-carotenoid accumulation, and rice seed carotenoid metabolism could be largely enhanced without any significant transcriptional alteration of carotenogenic genes. Finally, the “Three Faucets and Cisterns model” presents the extenuating circumstance to elucidate rice seed carotenoid metabolism.BACKGROUND In most angiosperms, the inheritance of the mitochondria takes place in a typical maternal manner. Sunitinib PDGFR inhibitor However, very less information is available about if the existence of structural variations or not in mitochondrial genomes (mitogenomes) between maternal parents and their progenies. RESULTS In order to find the answer, a stable rice backcross inbred line (BIL) population was derived from the crosses of Oryza glaberrima/Oryza sativa//Oryza sativa. The current study presents a comparative analysis of the mitogenomes between maternal parents and five BILs. There were recorded universal structural variations such as reversal, translocation, fusion, and fission among the BILs. The repeat-mediated recombination and non-homologous end-joining contributed virtually equal to the rearrangement of mitogenomes. Similarly, the relative order, copy-number, expression level, and RNA-editing rate of mitochondrial genes were also extensively varied among BILs. CONCLUSIONS These novel findings unraveled an unusual mystery of the maternal inheritance and possible cause for heterogeneity of mitogenomes in rice population. The current piece of work will greatly develop our understanding of the plant nucleo-cytoplasmic interaction and their potential role in plant growth and developmental processes.BACKGROUND Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs) carries many outstanding agronomic traits, therefore is a valuable resource for wheat genetic improvement. Wheat-P. huashanica translocation lines are important intermediate materials for wheat breeding and studying the functions of alien chromosomes. However, powdery mildew resistance in these translocation lines has not been reported previously. RESULTS This study developed a novel wheat-P. huashanica translocation line TR77 by selecting a F7 progeny from the cross between heptaploid hybrid H8911 (2n = 7x = 49, AABBDDNs) and durum wheat line Trs-372. Chromosome karyotype of 2n = 42 = 21II was observed in both mitotic and meiotic stages of TR77. Genomic in situ hybridization analysis identified two translocated chromosomes that paired normally at meiosis stage in TR77. Molecular marker analysis showed that part of chromosome 5D was replaced by part of alien chromosome fragment 5Ns. It meant replacement made part 5DL and part 5NsL·5NsS existed in wheat background, and then translocation happened between these chromosomes and wheat 3D chromosome. Fluorescence in situ hybridization demonstrated that TR77 carries dual translocations T3DS-5NsL·5NsS and T5DL-3DS·3DL. Analysis using a 15 K-wheat-SNP chip confirmed that SNP genotypes on the 5D chromosome of TR77 matched well with these of P. huashanica, but poorly with common wheat line 7182. The translocation was physically located between 202.3 and 213.1 Mb in 5D. TR77 showed longer spikes, more kernels per spike, and much better powdery mildew resistance than its wheat parents common wheat line 7182 and durum wheat line Trs-372. CONCLUSIONS TR77 is a novel stable wheat-P. huashanica T3DS-5NsL·5NsS and T5DL-3DS·3DL dual translocation line and showed significant improved spike traits and resistance to powdery mildew compared to its parents, thus, it can be an useful germplasm for breeding disease resistance and studying the genetic mechanism of dual translocations.BACKGROUND To study the genetic forms and pathophysiology of arterial hypertension by evaluating plasma renin activity in the Shors, minor indigenous peoples inhabiting the south of Western Siberia. METHODS A single-stage study of indigenous (the Shors) and non-indigenous peoples living in the villages of Gornaya Shoria of the Kemerovo region in the south of Western Siberia was conducted in the period from 2013 to 2017. One thousand four hundred nine adults (901 Shors and 508 non-indigenous inhabitants) were recruited in the study using a continuous sampling plan. Arterial blood pressure was measured according to 2018 ESC/ESH guidelines for the management of arterial hypertension. All the respondents underwent clinical and instrumental examination. Plasma renin activity was determined by enzyme-linked immunoassay with the BRG kits (Germany). Polymorphisms of ACE (I/D, rs 4340), АGT (c.803 T > C, rs699), AGTR1 (А1166С, rs5186), ADRB1 (с.145A > G, Ser49Gly, rs1801252) and ADRA2B (I/D, rs 28,365,031) genes were tested using polymerase chain reaction. RESULTS Renin-dependent hypertensive patients prevailed in both ethnic groups (65.6% in the indigenous group vs. 89.8% in the non-indigenous group, p = 0.001). Prevalence of a volume-dependent AH was low in both groups (34.4% in the indigenous group vs. 10.2% in the non-indigenous group, р = 0.001). The D/D and Т/Т genotypes of the АСЕ [OR = 6.97; 95% CI (1.07-55.58)] and AGT [OR = 3.53; 95% CI (1.02-12.91)] genes were associated with the renin-dependent AH in the Shors. The C/C genotype of AGTR1 gene was found to predispose to the volume-dependent AH [OR = 5.25; 95% CI (1.03-27.89)]. The C/C genotype of AGTR1 gene was associated with moderate or high renin levels suggesting essential AH in the non-indigenous group [OR = 5.00; 95% CI (1.21-22.30), р = 0.029]. CONCLUSION An in-depth understanding of AH pathophysiology and its genetic forms ensures the optimal choice of blood pressure-lowering treatment and optimizes AH control.