• Martin Baldwin posted an update 11 hours, 32 minutes ago

    Temporally and spatially highly resolved information on population characteristics, including demographic profile (e.g. age and sex), ethnicity and socio-economic status (e.g. income, occupation, education), are essential for observational health studies at the small-area level. Time-relevant population data are critical as denominators for health statistics, analytics and epidemiology, to calculate rates or risks of disease. Demographic and socio-economic characteristics are key determinants of health and important confounders in the relationship between environmental contaminants and health. In many countries, census data have long been the source of small-area population denominators and confounder information. A strength of the traditional census model has been its careful design and high level of population coverage, allowing high-quality detailed data to be released for small areas periodically, e.g. every 10 years. The timeliness of data, however, becomes a challenge when temporally and spatially highly accurate annual (or even more frequent) data at high spatial resolution are needed, for example, for health surveillance and epidemiological studies. Additionally, the approach to collecting demographic population information is changing in the era of open and big data and may eventually evolve to using combinations of administrative and other data, supplemented by surveys. We discuss different approaches to address these challenges including (i) the US American Community Survey, a rolling sample of the US population census, (ii) the use of spatial analysis techniques to compile temporally and spatially high-resolution demographic data and (iii) the use of administrative and big data sources as proxies for demographic characteristics. © The Author(s) 2020. Published by Oxford University Press on behalf of the International Epidemiological Association.Surveillance systems are commonly used to provide early warning detection or to assess an impact of an intervention/policy. Traditionally, the methodological and conceptual frameworks for surveillance have been designed for infectious diseases, but the rising burden of non-communicable diseases (NCDs) worldwide suggests a pressing need for surveillance strategies to detect unusual patterns in the data and to help unveil important risk factors in this setting. Surveillance methods need to be able to detect meaningful departures from expectation and exploit dependencies within such data to produce unbiased estimates of risk as well as future forecasts. This has led to the increasing development of a range of space-time methods specifically designed for NCD surveillance. We present an overview of recent advances in spatiotemporal disease surveillance for NCDs, using hierarchically specified models. This provides a coherent framework for modelling complex data structures, dealing with data sparsity, exploiting dependencies between data sources and propagating the inherent uncertainties present in both the data and the modelling process. We then focus on three commonly used models within the Bayesian Hierarchical Model (BHM) framework and, through a simulation study, we compare their performance. We also discuss some challenges faced by researchers when dealing with NCD surveillance, including how to account for false detection and the modifiable areal unit problem. Finally, we consider how to use and interpret the complex models, how model selection may vary depending on the intended user group and how best to communicate results to stakeholders and the general public. © The Author(s) 2020. Published by Oxford University Press on behalf of the International Epidemiological Association.In this era of ‘big data’, there is growing recognition of the value of environmental, health, social and demographic data for research. Open government data initiatives are growing in number and in terms of content. Remote sensing data are finding widespread use in environmental research, including in low- and middle-income settings. While our ability to study environment and health associations across countries and continents grows, data protection rules and greater patient control over the use of their data present new challenges to using health data in research. Innovative tools that circumvent the need for the physical sharing of data by supporting non-disclosive sharing of information, or that permit spatial analysis without researchers needing access to underlying patient data can be used to support analyses while protecting data confidentiality. User-friendly visualizations, allowing small-area data to be seen and understood by non-expert audiences, are revolutionizing public and researcher interactions with data. Deferoxamine The UK Small Area Health Statistics Unit’s Environment and Health Atlas for England and Wales, and the US National Environmental Public Health Tracking Network offer good examples. Open data facilitates user-generated outputs, and ‘mash-ups’, and user-generated inputs from social media, mobile devices and wearable tech are new data streams that will find utility in future studies, and bring novel dimensions with respect to ethical use of small-area data. © The Author(s) 2020. Published by Oxford University Press on behalf of the International Epidemiological Association.BACKGROUND We have developed an open-source ALgorithm for Generating Address Exposures (ALGAE) that cleans residential address records to construct address histories and assign spatially-determined exposures to cohort participants. The first application of this algorithm was to construct prenatal and early life air pollution exposure for individuals of the Avon Longitudinal Study of Parents and Children (ALSPAC) in the South West of England, using previously estimated particulate matter ≤10  µm (PM10) concentrations. METHODS ALSPAC recruited 14 541 pregnant women between 1991 and 1992. We assigned trimester-specific estimated PM10 exposures for 12 752 pregnancies, and first year of life exposures for 12 525 births, based on maternal residence and residential mobility. RESULTS Average PM10 exposure was 32.6  µg/m3 [standard deviation (S.D.) 3.0  µg/m3] during pregnancy and 31.4 µg/m3 (S.D. 2.6  µg/m3) during the first year of life; 6.7% of women changed address during pregnancy, and 18.0% moved during first year of life of their infant.