• Sylvest Melton posted an update 5 hours, 55 minutes ago

    In non-habitual situations, cognitive control aligns actions with both short- and long-term goals. The capacity for cognitive control is tightly tied to the prefrontal cortex, whose expansion in humans relative to other species is thought to support our superior cognitive control. However, the posterolateral cerebellum has also expanded greatly relative to non-human primates and has an organizational structure that mirrors the prefrontal cortex. Nevertheless, cerebellar contributions to cognitive control are poorly understood. Here, we sought to explore whether a functional hierarchical processing framework, applied to the cerebellum, could elucidate cerebellar contributions to cognitive control. Using functional magnetic resonance imaging, we show that a gradient within the posterolateral cerebellum supports cognitive control with motor-adjacent cerebellar sub-regions supporting control of concrete, proximal actions and motor-distal, cerebellar sub-regions supporting abstract, future processing. This gradient was functionally hierarchical, with regions higher in the hierarchy influencing the relationship between regions lower in the hierarchy. This functional hierarchy provides the infrastructure by which context can inform current actions and prepare for future goals. Crucially, this mirrors the hierarchical organization of cognitive control within the prefrontal cortex. Based on these findings, we propose that the cerebellum contains within itself a parallel but separate hierarchical organization that, along with the prefrontal cortex, supports complex cognition. Path integration is a robust mechanism that many animals employ to return to specific locations, typically their homes, during navigation. This efficient navigational strategy has never been demonstrated in a fully aquatic animal, where sensory cues used for orientation may differ dramatically from those available above the water’s surface. Here, we report that the mantis shrimp, Neogonodactylus oerstedii, uses path integration informed by a hierarchical reliance on the sun, overhead polarization patterns, and idiothetic (internal) orientation cues to return home when foraging, making them the first fully aquatic path-integrating animals yet discovered. We show that mantis shrimp rely on navigational strategies closely resembling those used by insect navigators, opening a new avenue for the investigation of the neural basis of navigation behaviors and the evolution of these strategies in arthropods and potentially other animals as well. VIDEO ABSTRACT. Published by Elsevier Inc.The plant hormone auxin serves as central regulator of growth and development. Auxin transporters in the plasma membrane are assumed to define tissue-level patterns of auxin distribution [1, 2]. Temsirolimus mouse However, auxin is small enough to diffuse through the plasmodesmata that connect neighboring cells [3], presenting an alternative pathway, whose contribution to auxin transport remained largely unexplored [4]. Here, photoactivation microscopy [5, 6] was used to measure the capacity for small-molecule diffusion in the epidermis of Arabidopsis thaliana leaves. In the elongated epidermis cells covering the midrib and petiole, the plasmodesmata-mediated cell-wall permeability was found to be several times higher in the longitudinal than in the transverse direction. The physiological relevance of this asymmetry was tested through quantification of the shade-avoidance response, which depends on auxin transport from the leaf tip to the petiole in the abaxial side of the leaf [7], with the hypothesis that directionality of diffusion supplements transporter-mediated auxin movement [8]. Triggering the response by auxin application at the tip led to stronger leaf movement in wild-type plants than in gsl8 mutants [9], which lack the callose synthase necessary to establish directionality. The results match the predictions of a mathematical model of auxin transport based on the permeabilities measured in wild-type and mutant plants. It is concluded that plasmodesmata permeability can be selectively modulated within a plant cell and that the conferred directionality in diffusion can influence the tissue-specific distribution patterns of small molecules, like auxin. Associations formed between plants and arbuscular mycorrhizal (AM) fungi are characterized by the bi-directional exchange of fungal-acquired soil nutrients for plant-fixed organic carbon compounds. Mycorrhizal-acquired nutrient assimilation by plants may be symmetrically linked to carbon (C) transfer from plant to fungus or governed by sink-source dynamics. Abiotic factors, including atmospheric CO2 concentration ([CO2]), can affect the relative cost of resources traded between mutualists, thereby influencing symbiotic function. Whether biotic factors, such as insect herbivores that represent external sinks for plant C, impact mycorrhizal function remains unstudied. By supplying 33P to an AM fungus (Rhizophagus irregularis) and 14CO2 to wheat, we tested the impact of increasing C sink strength (i.e., aphid herbivory) and increasing C source strength (i.e., elevated [CO2]) on resource exchange between mycorrhizal symbionts. Allocation of plant C to the AM fungus decreased dramatically following exposure to the bird cherry-oat aphid (Rhopalosiphum padi), with high [CO2] failing to alleviate the aphid-induced decline in plant C allocated to the AM fungus. Mycorrhizal-mediated uptake of 33P by plants was maintained regardless of aphid presence or elevated [CO2], meaning insect herbivory drove asymmetry in carbon for nutrient exchange between symbionts. Here, we provide direct evidence that external biotic C sinks can limit plant C allocation to an AM fungus without hindering mycorrhizal-acquired nutrient uptake. Our findings highlight the context dependency of resource exchange between plants and AM fungi and suggest biotic factors-individually and in combination with abiotic factors-should be considered as powerful regulators of symbiotic function. Crown All rights reserved.Evolutionary theory expects social, communicative species to eavesdrop most on other species’ alarm calls [e.g., 1, 2] but also that solitary-living species benefit most from eavesdropping [3, 4]. Examples of solitary species responding to the alarm calls of other species, however, are limited and unconvincing [3-5]. The Swahili name for the red-billed oxpecker (Buphagus erythrorynchus) is Askari wa kifaru, the rhinos’ guard [6]. Black rhino (Diceros bicornis) are a solitary-living, non-vocal species and are critically endangered through hunting. We searched Hluhluwe-iMfolozi Park, South Africa, for rhinoceros for 27 months with and without the aid of radio telemetry and conducted 86 experimental, unconcealed approaches to 11 rhino, without or with varying numbers of resident oxpecker. Oxpeckers enabled rhinos to evade detection by us in 40% to 50% of encounters. Alarm-calling by oxpeckers significantly improved the rate and distance that rhinos detected our approach from 23% to 100% and 27 ± 6 m to 61 ± 4 m, respectively.