• Villadsen Refsgaard posted an update 6 hours, 30 minutes ago

    metabolism employed by certain cancers. Upregulation of glycolysis and tricarboxylic acid cycle genes was also apparent in IMR-90 human primary lung fibroblast cells infected with a HAdV-5 mutant virus that expressed the 13S, but not the 12S encoded E1A isoform. In conclusion, it appears that the two major isoforms of E1A differentially influence cellular glycolysis and oxidative phosphorylation and this is at least partially due to the altered regulation of mRNA expression for the genes in these pathways.The granary weevil, Sitophilus granarius Linnaeus 1875, is a primary pest of stored grains worldwide. Feeding damage and progeny production of S. granarius was estimated to identify the levels of resistance of the insect on different durum wheat cultivars. Insect attack on four different durum wheat cultivars was investigated over a period of 20 weeks. Durum wheats were artificially infected with 20 individuals of S. granarius. Every two weeks the sample weight, hectoliter weight, moisture and the number of live weevils, including their number of progenies, were recorded. Overall findings revealed different levels of resistance of different durum wheat cultivars to S. granarius infestation. The Primadur cultivar had the highest resistance, followed by the Marco Aurelio and Cesare cultivars followed finally by the Tito Flavio cultivar which was highly susceptible to S. Cordycepin molecular weight granarius. For all cultivars, apart from Primadur, S. granarius metabolism increased humidity and temperature, leading to grain degradation and resulting in the potential complete loss of market value if under field conditions. Evidently, durum wheat characteristics affect the life cycle of S. granarius, primarily their progeny, and thus the damage they undertake to the wheat itself. These findings are important because they enable the strategic selection of wheat cultivars that can be stored for a longer time period, while more sensitive wheat cultivars can be selected for shorter storage time and thus faster delivery to market.Stereotypic behavior (SB) is common in emotional stress-involved psychiatric disorders and is often attributed to glutamatergic impairments, but the underlying molecular mechanisms are unknown. Given the neuro-modulatory role of acetylcholine, we sought behavioral-transcriptomic links in SB using TgR transgenic mice with impaired cholinergic transmission due to over-expression of the stress-inducible soluble ‘readthrough’ acetylcholinesterase-R splice variant AChE-R. TgR mice showed impaired organization of behavior, performance errors in a serial maze test, escape-like locomotion, intensified reaction to pilocarpine and reduced rearing in unfamiliar situations. Small-RNA sequencing revealed 36 differentially expressed (DE) microRNAs in TgR mice hippocampi, 8 of which target more than 5 cholinergic transcripts. Moreover, compared to FVB/N mice, TgR prefrontal cortices displayed individually variable changes in over 400 DE mRNA transcripts, primarily acetylcholine and glutamate-related. Furthermore, TgR brains presented c-fos over-expression in motor behavior-regulating brain regions and immune-labeled AChE-R excess in the basal ganglia, limbic brain nuclei and the brain stem, indicating a link with the observed behavioral phenotypes. Our findings demonstrate association of stress-induced SB to previously unknown microRNA-mediated perturbations of cholinergic/glutamatergic networks and underscore new therapeutic strategies for correcting stereotypic behaviors.Assessing bone quality and quantity at the location of dental implants before dental implantation is crucial. In recent years, dental cone-beam computed tomography (dental CBCT) has often been used to assess bone quality and quantity prior to dental implant. However, the effect of scanning resolution on the prediction of trabecular bone microarchitectural parameters (TBMPs) remains unclear. The objective of this study was to examine how dental CBCT with various scanning resolution differs with regard to predicting TBMPs. This study used micro-computed tomography (micro-CT) with 18 μm resolution and dental CBCT with 100 μm and 150 μm resolutions on 28 fresh bovine vertebrae cancellous bone specimens. Subsequently, all images were input into the ImageJ software to measure four TBMPs bone volume total volume fraction (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), and trabecular separation (Tb.Sp). One-way analysis of variance and Tukey’s test were subsequently used to assess the differences between three scanning modes for the four TBMPs. In addition, correlations between measurement results obtained from micro-CT and dental CBCT with two resolutions were measured. The experimental results indicated that significant differences in four TBMPs were observed between micro-CT and dental CBCT (p less then 0.05). The correlation coefficients between BV/TV, Tb.N, and Tb.Sp obtained from micro-CT and from dental CBCT with 100 μm resolution (0.840, 0.739, and 0.820, respectively) were greater than the correlation coefficients between BV/TV, Tb.N, and Tb.Sp obtained from micro-CT and from dental CBCT with 150 μm resolution (0.758, 0.367, and 0.724, respectively). The experimental results revealed that the TBMPs measured with dental CBCT with two resolutions differed from ideal values, but a higher resolution could provide more accurate prediction results, particularly for BV/TV, Tb.N, and Tb.Sp.A longstanding challenge is to understand how ribosomes parse mRNA open reading frames (ORFs). Significantly, GCN codons are over-represented in the initial codons of ORFs of prokaryote and eukaryote mRNAs. We describe a ribosome rRNA-protein surface that interacts with an mRNA GCN codon when next in line for the ribosome A-site. The interaction surface is comprised of the edges of two stacked rRNA bases the Watson-Crick edge of 16S/18S rRNA C1054 and the adjacent Hoogsteen edge of A1196 (Escherichia coli 16S rRNA numbering). Also part of the interaction surface, the planar guanidinium group of a conserved Arginine (R146 of yeast ribosomal protein Rps3) is stacked adjacent to A1196. On its other side, the interaction surface is anchored to the ribosome A-site through base stacking of C1054 with the wobble anticodon base of the A-site tRNA. Using molecular dynamics simulations of a 495-residue subsystem of translocating ribosomes, we observed base pairing of C1054 to nucleotide G at position 1 of the next-in-line codon, consistent with previous cryo-EM observations, and hydrogen bonding of A1196 and R146 to C at position 2.