• Coyle Tran posted an update 6 hours, 8 minutes ago

    Lipid-soluble bioactives are important nutrients in foods. However, their addition in food formulations, is often limited by limited solubility and high tendency for oxidation. Lipid-soluble bioactives, such as vitamins A, E, D and K, carotenoids, polyunsaturated fatty acids (PUFA) and essential oils are generally dispersed in water-based solutions by homogenization. Among the different homogenization technologies available, nanoemulsions are one of the most promising. Accordingly, this review aims to summarize the most recent advances in nanoemulsion technology for the encapsulation of lipid-soluble bioactives. Modern approaches for producing nanoemulsion systems will be discussed. In addition, the challenges on the encapsulation of common food ingredients, including the physical and chemical stability of the nanoemulsion systems, will be also critically examined.Throwing speed is likely a key determinant of shoulder-specific load. However, it is difficult to estimate the speed of throws in handball in field-based settings with many players due to limitations in current technology. Therefore, the purpose of this study was to develop a novel method to estimate throwing speed in handball using a low-cost accelerometer-based device. Nineteen experienced handball players each performed 25 throws of varying types while we measured the acceleration of the wrist using the accelerometer and the throwing speed using 3D motion capture. Using cross-validation, we developed four prediction models using combinations of the logarithm of the peak total acceleration, sex and throwing type as the predictor and the throwing speed as the outcome. We found that all models were well-calibrated (mean calibration of all models 0.0 m/s, calibration slope of all models 1.00) and precise (R2 = 0.71-0.86, mean absolute error = 1.30-1.82 m/s). We conclude that the developed method provides practitioners and researchers with a feasible and cheap method to estimate throwing speed in handball from segments of wrist acceleration signals containing only a single throw.Formulas adapted to infant feeding, although most of the time made from cow’s milk proteins, can be made from hydrolyzed rice protein but they must be classified as “formulas for specific medical needs”, according to European regulations. The nutritional quality of rice proteins is thus suitable to be used in infant formulas giving that it is supplemented by certain amino acids which can be lacking. Besides, hydrolysis is required to facilitate their water solubility and digestibility. Owing to a low allergenicity of rice and to the absence of the cross-allergy between milk proteins and rice proteins, these formulas are adapted to the diet of children with cow’s milk protein allergy (CMPA), which explains their growing use in some countries. However, CMPA, an expanding disorder, has consequences for growth, bone mineralization, and often has an association with allergy to other foods, including cow’s milk extensive hydrolysate, so that a surveillance of the adaption of hydrolyzed rice protein formulas (HRPF) to CMPA, the absence of unexpected side effects, and the appropriate response to its various health hazards seems mandatory. This paper analyses the health problem deriving from CMPA, the industrial development of hydrolyzed rice protein formulas, and the limited number of clinical studies, which confirms, at the moment, a good allergic tolerance and safety. The goal is to better advise heath care professionals on their use of HRPFs during CMPA.So far, there have been no studies on fungal communities in Prunus serotina (black cherry) wood. Our objectives were to characterize fungal communities from P. serotina wood and to evaluate effects of glyphosate (Glifocyd 360 SL) used on P. serotina stumps on abundance, species richness and diversity of those communities. selleck kinase inhibitor In August 2016, in the Podanin Forest District, stumps of black cherry trees left after felling were treated with the herbicide. Control stumps were treated with water. Wood discs were cut from the surface of the stumps in May and July-August 2017. Eight treatment combinations (2 herbicide treatments × 2 disc sizes × 2 sample times) were tested. Sub-samples were pooled and ground in an acryogenic mill. Environmental DNA was extracted with a Plant Genomic DNA Purification Kit. The ITS1, 5.8S rDNA region was used to identify fungal species, using primers ITS1FI2 5′-GAACCWGCGGARGGATCA-3′ and 5.8S 5′-CGCTGCGTT CTTCATCG-3′. The amplicons were sequenced using the Illumina system. The results were of fungal communities in deciduous tree wood. The greater frequency of Ascomycota in herbicide-treated than in untreated stumps indicates their greater tolerance of glyphosate.Glutamine synthetase (GS), the key enzyme in plant nitrogen assimilation, is strictly regulated at multiple levels, but the most relevant reports focus on the mRNA level. Using specific antibodies as probes, the effects of nitrogen on the expression and localization of individual wheat GS (TaGS) isoforms were studied. In addition to TaGS2, TaGS1;1 with high affinity to substrate and TaGS1;3 with high catalytic activity were also localized in mesophyll, and may participate in cytoplasmic assimilation of ammonium (NH4+) released from photorespiration or absorbed by roots; TaGS1;2 was localized in xylem of leaves. In roots, although there were hundreds of times more TaGS1;1 than TaGS1;2 transcripts, the amount of TaGS1;1 subunit was not higher than that of TaGS1;2; NH4+ inhibited TaGS1;1 expression but stimulated TaGS1;3 expression. In root tips, nitrate stimulated TaGS1;1, TaGS1;3, and TaGS2 expression in meristem, while NH4+ promoted tissue differentiation and TaGS1;2 expression in endodermis and vascular tissue. Only TaGS1;2 was located in vascular tissue of leaves and roots, and was activated by glutamine, suggesting a role in nitrogen transport. TaGS1;3 was induced by NH4+ in root endodermis and mesophyll, suggesting a function in relieving NH4+ toxicity. Thus, TaGS isoforms play distinct roles in nitrogen assimilation for their different kinetic properties, tissue locations, and response to nitrogen regimes.