-
Jordan West posted an update 6 hours, 1 minute ago
s and preventive management of glaucoma.
PMBD is associated with ischemic effects. Although the majority of PMBD do not progress, some of cases are associated with glaucomatous damage in a long-term way. PMBD might be a personalized indicator representing ischemia-associated diseases and a predictive factor for diagnosis and preventive management of glaucoma.Deep learning has achieved great success in areas such as computer vision and natural language processing. In the past, some work used convolutional networks to process EEG signals and reached or exceeded traditional machine learning methods. We propose a novel network structure and call it QNet. It contains a newly designed attention module 3D-AM, which is used to learn the attention weights of EEG channels, time points, and feature maps. It provides a way to automatically learn the electrode and time selection. QNet uses a dual branch structure to fuse bilinear vectors for classification. It performs four, three, and two classes on the EEG Motor Movement/Imagery Dataset. The average cross-validation accuracy of 65.82%, 74.75%, and 82.88% was obtained, which are 7.24%, 4.93%, and 2.45% outperforms than the state-of-the-art, respectively. The article also visualizes the attention weights learned by QNet and shows its possible application for electrode channel selection.Face parsing is an important computer vision task that requires accurate pixel segmentation of facial parts (such as eyes, nose, mouth, etc.), providing a basis for further face analysis, modification, and other applications. Interlinked Convolutional Neural Networks (iCNN) was proved to be an effective two-stage model for face parsing. However, the original iCNN was trained separately in two stages, limiting its performance. To solve this problem, we introduce a simple, end-to-end face parsing framework STN-aided iCNN(STN-iCNN), which extends the iCNN by adding a Spatial Transformer Network (STN) between the two isolated stages. The STN-iCNN uses the STN to provide a trainable connection to the original two-stage iCNN pipeline, making end-to-end joint training possible. Moreover, as a by-product, STN also provides more precise cropped parts than the original cropper. Due to these two advantages, our approach significantly improves the accuracy of the original model. Our model achieved competitive performance on the Helen Dataset, the standard face parsing dataset. check details It also achieved superior performance on CelebAMask-HQ dataset, proving its good generalization. Our code has been released at https//github.com/aod321/STN-iCNN.In order to overcome the security weakness of the discrete chaotic sequence caused by small Lyapunov exponent and keyspace, a general chaotic construction method by cascading multiple high-dimensional isomorphic maps is presented in this paper. Compared with the original map, the parameter space of the resulting chaotic map is enlarged many times. Moreover, the cascaded system has larger chaotic domain and bigger Lyapunov exponents with proper parameters. In order to evaluate the effectiveness of the presented method, the generalized 3-D Hénon map is utilized as an example to analyze the dynamical behaviors under various cascade modes. Diverse maps are obtained by cascading 3-D Hénon maps with different parameters or different permutations. It is worth noting that some new dynamical behaviors, such as coexisting attractors and hyperchaotic attractors are also discovered in cascaded systems. Finally, an application of image encryption is delivered to demonstrate the excellent performance of the obtained chaotic sequences.Brain-computer interface (BCI) system based on motor imagery (MI) usually adopts multichannel Electroencephalograph (EEG) signal recording method. However, EEG signals recorded in multi-channel mode usually contain many redundant and artifact information. Therefore, selecting a few effective channels from whole channels may be a means to improve the performance of MI-based BCI systems. We proposed a channel evaluation parameter called position priori weight-permutation entropy (PPWPE), which include amplitude information and position information of a channel. According to the order of PPWPE values, we initially selected half of the channels with large PPWPE value from all sampling electrode channels. Then, the binary gravitational search algorithm (BGSA) was used in searching a channel combination that will be used in determining an optimal channel combination. The features were extracted by common spatial pattern (CSP) method from the final selected channels, and the classifier was trained by support vector machine. The PPWPE + BGSA + CSP channel selection method is validated on two data sets. Results showed that the PPWPE + BGSA + CSP method obtained better mean classification accuracy (88.0% vs. 57.5% for Data set 1 and 91.1% vs. 79.4% for Data set 2) than All-C + CSP method. The PPWPE + BGSA + CSP method can achieve higher classification in fewer channels selected. This method has great potential to improve the performance of MI-based BCI systems.Acupuncturing the Zusanli (ST 36) point with different types of manual acupuncture manipulations (MAs) and different frequencies can evoke a lot of neural response activities in spinal dorsal root neurons. The action potential is the basic unit of communication in the neural response process. With the rapid development of the electrode acquisition technology, we can simultaneously obtain neural electrical signals of multiple neurons in the target area. So it is crucial to extract spike trains of each neuron from raw recorded data. To solve the problem of variability of the spike waveform, this paper adopts a optimization algorithm based on model to improve the wave-cluster algorithm, which can provide higher accuracy and reliability. Further, through this optimization algorithm, we make a statistical analysis on spike events evoked by different MAs. Results suggest that numbers of response spikes under reinforcing manipulations are far more than reducing manipulations, which mainly embody in synchronous spike activities.