• Winther Hamann posted an update 7 hours, 53 minutes ago

    The optimized reconstruction showed advantages over other methods with reduced aliasing and improved SNR. With the proposed method, spatial resolution of 1.3*1.3mm

    with 150mm field-of-view (FOV) and temporal resolution of 30 frames-per-second (fps) was achieved with good image quality. Blurring was reduced using the Chebyshev approximation method.

    This work studies low rank plus sparse reconstruction using the spiral trajectory and demonstrates a new method for dynamic vocal tract imaging which can benefit studies of speech disorders.

    This work studies low rank plus sparse reconstruction using the spiral trajectory and demonstrates a new method for dynamic vocal tract imaging which can benefit studies of speech disorders.

    Berberine (BBR), extracted from the traditional medicinal plant Coptis chinensis Franch., has been widely used for the treatment of type 2 diabetes mellitus (T2DM) and its complications.

    To determine the potential pharmacological mechanisms underlying BBR therapeutic effect on T2DM and its complications by in silico network pharmacology and experimental in vivo validation.

    A predictive network depicting the relationship between BBR and T2DM was designed based on information collected from several databases, namely STITCH, CHEMBL, PharmMapper, TTD, Drugbank, and PharmGKB. GW6471 datasheet Identified overlapping targets related to both BBR and T2DM were crossed with information on biological processes (BPs) and molecular/signaling pathways using the DAVID platform and Cytoscape software. Three candidate targets identified with the BBR-T2DM network (RXRA, KCNQ1 and NR3C1) were evaluated in the C57BL/6J mouse model of T2DM. The mice were treated with BBR or metformin for 10 weeks. Weight, fasting blood glucose (FBG), oral gd the development of new drugs.

    Using network pharmacology and a T2DM mouse model, this study revealed that BBR can effectively prevent T2DM symptoms through vital targets and multiple signaling pathways. Network pharmacology provides an efficient, time-saving approach for therapeutic research and the development of new drugs.

    Physalis angulata L. is commonly used in many countries as popular medicine for the treatment of a variety of diseases such as malaria, hepatitis, dermatitis and rheumatism. But the anti-inflammatory active constituents of this medicinal plant and their molecular mechanism are still not elucidated clearly.

    The aim of the study is to isolate and identify a series of compounds from the ethanolic extract of Physalis angulata L., and to investigate the anti-inflammatory activities in vitro and the molecular mechanism of physagulin A, physagulin C, and physagulin H.

    In order to further understand the anti-inflammatory mechanism of the three compounds, their potential anti-inflammatory activities were investigated in vitro in LPS-activated RAW 264.7 macrophage cells by Griess assay, ELISA, Western blot and immunofluorescence methods in the present study.

    Physagulin A, physagulin C, and physagulin H could not only inhibit the release of NO, PGE

    , IL-6 and TNF-α, but also could down-regulate the expression ots for inflammatory diseases.

    The genus Hypericum are widely distributed in China. Hypericum perforatum L. (genus Hypericum, family Hypericaceae) has a long history as a traditional Chinese medicine, which was traditionally used for the treatment of emotional distress, cardiothoracic depression, and acute mastitis. Hyperoside (Hyp) extracted from Hypericum perforatum L. has been affirmed to exert therapeutic effects on cardiovascular diseases, with widespread existence in plants of genus Hypericum. Hyp could also be extracted from Crataegus pinnatifida Bunge (genus Crataegus pinnatifida Bunge, family Rosaceae), another traditional Chinese medicine that traditionally prevented and treated heart disease in China. The cardioprotection and mechanism of Hyp comprise anti-inflammation, anti-fibrosis, activation of autophagy, and reversal of cardiac remodeling.

    This study aimed to explore the Hyp effect against MI and its underlying mechanism.

    The MI model was constructed in the KM mice via a ligating surgery of the left anterior descendintion of autophagic flux suppressed NLRP1 inflammation pathway after Hyp treatment. However, co-treatment with 3-MA abrogated above effects of Hyp.

    Hyp had obvious protective effect on heart injury in MI mice. Echocanrdiographic and histological measurements demonstrated that Hyp treatment improved cardiac function, and ameliorated myocardial hypertrophy and fibrinogen deposition after MI. The partial mechanism is that Hyp could up-regulate autophagy after MI. Furthermore, the promotion of autophagic flux would suppress NLRP1 inflammation pathway induced by MI.

    Hyp had obvious protective effect on heart injury in MI mice. Echocanrdiographic and histological measurements demonstrated that Hyp treatment improved cardiac function, and ameliorated myocardial hypertrophy and fibrinogen deposition after MI. The partial mechanism is that Hyp could up-regulate autophagy after MI. Furthermore, the promotion of autophagic flux would suppress NLRP1 inflammation pathway induced by MI.Transient receptor potential ankyrin 1 (TRPA1) channel is expressed in a subset of nociceptive neurons. This channel integrates several nociceptive signals. Particularly, it is modulated by intracellular pH (pHi). Na+/H+ exchanger 1 (NHE1) contributes to the maintenance of pHi in nociceptors. However, it is currently unknown whether the interaction between TRPA1 and NHE1 contributes to the nociceptive processing. Thus, the purpose of this study was to assess the functional interaction between NHE1 and TRPA1 in small dorsal root ganglion (DRG) neurons from primary culture obtained from adult rats. Moreover, we also evaluated their possible interaction in acute and inflammatory pain. Zoniporide (selective NHE1 inhibitor) reduced pHi and increased intracellular calcium in a concentration-dependent fashion in DRG neurons. Zoniporide and allyl isothiocyanate (AITC, TRPA1 agonist) increased calcium transients in the same DRG neuron, whereas that A-967079 (TRPA1 antagonist) prevented the effect of zoniporide in DRG neurons.