• Waugh Simmons posted an update 1 day, 20 hours ago

    CONCLUSIONS This study reveals a hypertriglyceridemia in both β3-deficient Chinese patients and mice and provides novel insights into the molecular mechanisms of the significant roles of β3 in LPL secretion and triglyceride metabolism, drawing attention to the metabolic consequences in patients with β3-deficient Glanzmann thrombasthenia.Cardiovascular disease due to atherosclerosis is still the main cause of morbidity and mortality worldwide. This disease is a complex systemic disorder arising from a network of pathological processes within the arterial vessel wall, and, outside of the vasculature, in the hematopoietic system and organs involved in metabolism. Recent years have seen tremendous efforts in the development and validation of quantitative imaging technologies for the noninvasive evaluation of patients with atherosclerotic cardiovascular disease. Specifically, the advent of combined positron emission tomography and magnetic resonance imaging scanners has opened new exciting opportunities in cardiovascular imaging. In this review, we will describe how combined positron emission tomography/magnetic resonance imaging scanners can be leveraged to evaluate atherosclerotic cardiovascular disease at the whole-body level, with specific focus on preclinical animal models of disease, from mouse to nonhuman primates. We will broadly describe 3 major areas of application (1) vascular imaging, for advanced atherosclerotic plaque phenotyping and evaluation of novel imaging tracers or therapeutic interventions; (2) assessment of the ischemic heart and brain; and (3) whole-body imaging of the hematopoietic system. Finally, we will provide insights on potential novel technical developments which may further increase the relevance of integrated positron emission tomography/magnetic resonance imaging in preclinical atherosclerosis studies.This review focuses on the association between vascular calcification and arterial stiffness, highlighting the important genetic factors, systemic and local microenvironmental signals, and underlying signaling pathways and molecular regulators of vascular calcification. Elevated oxidative stress appears to be a common procalcification factor that induces osteogenic differentiation and calcification of vascular cells in a variety of disease conditions such as atherosclerosis, diabetes mellitus, and chronic kidney disease. Thus, the role of oxidative stress and oxidative stress-regulated signals in vascular smooth muscle cells and their contributions to vascular calcification are highlighted. In relation to diabetes mellitus, the regulation of both hyperglycemia and increased protein glycosylation, by AGEs (advanced glycation end products) and O-linked β-N-acetylglucosamine modification, and its role in enhancing intracellular pathophysiological signaling that promotes osteogenic differentiation and calcification of vascular smooth muscle cells are discussed. In the context of chronic kidney disease, this review details the role of calcium and phosphate homeostasis, parathyroid hormone, and specific calcification inhibitors in regulating vascular calcification. In addition, the impact of these systemic and microenvironmental factors on respective intrinsic signaling pathways that promote osteogenic differentiation and calcification of vascular smooth muscle cells and osteoblasts are compared and contrasted, aiming to dissect the commonalities and distinctions that underlie the paradoxical vascular-bone mineralization disorders in aging and diseases.Early vascular aging reflects increased arterial stiffness of central blood vessels at young chronological ages and powerfully predicts cardiovascular events and mortality, independent of routine brachial blood pressure and other risk factors. Since ethnic disparities exist in routine blood pressure, in hypertension and cardiovascular outcomes, this review evaluates major studies comparing arterial stiffness through the life course between different ethnic groups or races (which have no biological definition)-in children, adolescents, young, and middle-aged adults and the very elderly. Most report that compared with white European-origin samples, populations of black African descent have increased central arterial stiffness throughout different life stages, as well as a more rapid increase in arterial stiffness at young ages. Exceptions may include African Caribbean origin people in Europe. Differences in vascular structure and function are clearest, where obesity, socioeconomic, and psychosocial factors are most marked. Few studies evaluate a wider spectrum of ethnic groups or factors contributing to these ethnic disparities. selleck Genetic effects are not obvious; maternal risk and intergenerational studies are scarce. Nevertheless, across all ethnic groups, for given levels of blood pressure and age, some people have stiffer central arteries than others. These individuals are most at risk of vascular events and mortality and, therefore, may benefit from early, as yet untested, preventive action and treatment.Emicizumab is a humanized anti-FIX/FX (factor IXa/X) bispecific monoclonal antibody that mimics FVIIIa (activated factor VIII) cofactor function. The hemostatic efficacy of emicizumab has been confirmed in clinical studies of patients with hemophilia A, irrespective of the presence of FVIII inhibitors. Emicizumab differs in some properties from FVIIIa molecule. Emicizumab requires no activation by thrombin and is not inactivated by activated protein C, but emicizumab-mediated coagulation is regulatable and maintains hemostasis. A small amount of FIXa (activated factor IX) is required to initiate emicizumab-mediated hemostasis, whereas tissue factor/FVIIa (activated factor VII)-mediated Fxa (activated factor X) and thrombin activation initiates FVIIIa-mediated hemostasis. Fibrin formation, followed by fibrinolysis, appears to be similar between emicizumab- and FVIIIa-mediated hemostasis. These results suggest possible future uses of emicizumab for treating hemorrhagic diseases other than hemophilia A and reveal previously unobservable behaviors of procoagulation and anticoagulation factors in conventional hemostasis. Here, we have reviewed novel insights and new developments regarding coagulation highlighted by emicizumab.