• Zimmerman James posted an update 7 hours, 5 minutes ago

    This is the first report, to the best of our knowledge, on the usage of LiAl HTlc for the removal of heavy metal cations Cu2+ and Zn2+ from a solution. LiAl HTlc is a promising sorbent for treating water containing heavy metal cations. We report here measurements of aerosol black carbon (BC) and aqueous and methanol-extractable brown carbon (BrCaq and BrCme) from a receptor location in the eastern Indo-Gangetic Plain (IGP) under two aerosol regimes the photochemistry-dominated summer and biomass burning (BB) dominated post-monsoon. We couple time-resolved measurements of BC and aerosol light absorption coefficients (babs) with time-integrated analysis of BrC UV-Vis and fluorescence characteristics, along with measurements of total and water-soluble organic carbon (OC and WSOC), and ionic species (NH4+, K+, NO3-). In the BB regime, BC and its BB-derived fraction (BCBB) increased by factors of 3-4 over summertime values. In comparison, babs_365_aq and babs_365_me (absorption coefficients of BrCaq and BrCme at 365 nm) increased by a factor of 5 (9.7 ± 7.8 vs 2.1 ± 1.4 Mm-1) and 2.5 (17.2 ± 9.0 vs 6.9 ± 2.9 Mm-1), respectively, in the BB period over summer, and were highly correlated (r = 0.82-0.87; p  less then  0.01) with the BB-tracer nssK+. to radiative forcing vis-à-vis BC in the 300-400 nm range. OBJECTIVE To examine the association between absolute humidity (AH) and influenza and pneumonia (P&I) mortality, and to quantify P&I mortality burden attributable to non-optimum AHs among elderly people aged ≥65 years in Chongqing, the largest municipality of China. METHODS Daily data of P&I mortality from 2012 to 2018, and the contemporaneous meteorological data in the study area were collected. Distributed lag non-linear model (DLNM) was applied to estimate the non-linear and delayed effects of absolute humidity (AH) on P&I mortality. Then, attributable deaths were calculated for the dry and moist AH, defined as AH below and above the minimum mortality AH (MMAH), respectively. Moderate and extreme AHs were defined using cutoffs at the 2.5th and 97.5th percentiles of AH. RESULTS The relationship between AH and P&I mortality was a U-shaped curve. The MMAH was 11.5 g/m3 (46.4th percentile). In total, 25.7% (95% confidence interval 10.0-38.2) of P&I mortality (4673 deaths) was attributed to non-optimum AHs. Low AHs were responsible for 12.7% of the P&I death burden (95%CI 0.2-20.1), while high AHs for 13.0% (95%CI -9.4-25.7). Extreme low and high AHs accounted for 3.7% (95%CI 0.1-6.8) and 3.0% (95%CI 0-5.4) of P&I mortality. CONCLUSIONS Our study showed that both low AHs and high AHs are responsible for considerable AH-related P&I mortality burden among elderly people. Our results may have important public health implications for the development of relevant intervention policies to reduce P&I deaths among the elderly. V.Bauxite residue is typically alkaline, has high sodium content and elevated concentrations of trace elements. Effective rehabilitation strategies are needed to mitigate potential environmental risks from its disposal and storage. Increasingly, the importance of viable soil faunal populations as well as establishment of vegetation covers is recognized as key components of successful rehabilitation. Inoculation with earthworms is a strategy for accelerating mine site rehabilitation, but little is known on the effects of bauxite residue properties on earthworm survival and viability. In the current study, earthworms (Eisenia fetida) were exposed for 28 days to a series of bauxite residue/soil treatments (0, 10, 25, 35, 50, 75 and 100% residue) to evaluate possible toxic effects on earthworms, investigate the bioavailability of relevant elements (e.g. As, Cr, V), and assess the risk of element transfer. Results showed that soil containing ≥25% residue (pH ≥ 9.8; ESP ≥ 18.5%; extractable Na ≥ 1122 mg/kg) significaNonetheless, trace element uptake in earthworms should be regularly monitored and the risk to the food chain further investigated. V.The present-day acid-base chemistry of surface waters can be directly linked to contemporary observations of acid deposition; however, pre-industrial conditions are key to predicting the potential future recovery of stream ecosystems under decreasing loads of atmospheric sulfur (S) and nitrogen (N) deposition. The integrated biogeochemical model PnET-BGC was applied to 25 forest watersheds that represent a range of acid sensitivity in the Adirondack region of New York, USA to simulate the response of streams to past and future changes in atmospheric S and N deposition, and calculate the target loads of acidity for protecting and restoring stream water quality and ecosystem health. Using measured data, the model was calibrated and applied to simulate soil and stream chemistry at all study sites. Model hindcasts indicate that historically stream water chemistry in the Adirondacks was variable, but inherently sensitive to acid deposition. The median model-simulated acid neutralizing capacity (ANC) of the streams was projected to be 55 μeq L-1 before the advent of anthropogenic acid deposition (~1850), decreasing to minimum values of 10 μeq L-1 around the year 2000. The median simulated ANC increased to 13 μeq L-1 by 2015 in response to decreases in acid deposition that have occurred over recent decades. Model projections suggest that simultaneous decreases in sulfate, nitrate and ammonium deposition are more effective in restoring stream ANC than individual decreases in sulfur or nitrogen deposition. However, the increases in stream ANC per unit equivalent decrease in S deposition is greater compared to decreases in N deposition. Using empirical algorithms, fish community density and biomass are projected to increase under several deposition-control scenarios that coincide with increases in stream ANC. Model projections suggest that even under the most aggressive deposition-reduction scenarios, stream chemistry and fisheries will not fully recover from historical acidification by 2200. Carbon dioxide (CO2) concentration (CDC) is an essential parameter of underground atmospheres for safety and cave heritage preservation. selleck chemical In the Chauvet cave (South France), a world heritage site hosting unique paintings dated 36,000 years BP, a high-sensitivity monitoring, ongoing since 1997, revealed 1) two compartments with a spatially uniform CDC, a large volume (A) (40,000 to 80,000 m3) with a mean value of 2.20 ± 0.01% vol. in 2016, and a smaller remote room (B) (2000 m3), with a higher mean value of 3.42 ± 0.01%; 2) large CDC annual variations with peak-to-peak amplitude of 2% and 1.6% in A and B, respectively; 3) long-term changes, with an increase of CDC and of its annual amplitude since 1997, then faster since 2013, reaching a maximum of 4.4% in B in 2017, decreasing afterwards. While a large effect of seasonal ventilation is ruled out, monitoring of seepage at two dripping points indicated that the main control of CDC seasonal reduction was transient infiltration. During periods of water deficit, calculated from surface temperature and rainfall, CDC systematically increased.