-
Walton Christensen posted an update 6 hours, 20 minutes ago
Volatile organic compounds (VOCs) emitted from coal-fired flue gas of thermal power plants have reached unprecedented levels due to lack of understanding of reaction mechanisms under industrial settings. Herein, inhibition mechanisms for catalytic oxidation of o-xylene in simulated coal-fired flue gas are elucidated with in-situ and ex-situ spectroscopic techniques considering the presence of impurity components (NO, NH3, SO2, H2O). MnCe oxide catalysts prepared at Mn Ce mass ratios of 64 are demonstrated to promote 87% o-xylene oxidation at 250 °C under gas hourly space velocities of 60,000 h-1. Reaction intermediates on the catalyst surface are revealed to be o-benzoquinones, benzoates, and formate and they were stably formed under O2/N2 atmospheres. When either NO or NH3 was introduced into the simulated flue gas, the formed species shifted toward formate in minutes, which indicated that changes in catalyst surface chemistry are directly related to impurity components. Presence of NH3 in the simulated flue gas inhibited o-xylene oxidation by reducing Mn and lowering Brønsted acidity of the catalyst. Impurity components associated with pollutant removal processes (Hg0 oxidation and selective catalytic reduction of NO) lowered o-xylene removal efficiency. Presence of o-xylene in the flue gas had little effect on the efficiency of pollutant removal processes. Layered catalytic beds located downstream from Hg0/NO pollutant removal processes are proposed to lower VOC emissions from coal-fired flue gases of thermal power plants in industrial settings.Biological processes tend to dominate the oxygen regime of productive waters. However, in shallow aquatic ecosystems, it is unclear whether the oxygen regime is driven by oxygen production and consumption in the water column or by sediment oxygen demand (SOD). In managed eutrophic ecosystems, this question is especially important in the context of extreme daily oscillations of dissolved oxygen (DO) that could breach physiological limits of heterotrophic aerobic organisms. High-frequency measurement of DO, temperature, global radiation (Gl.Rad.), and pH in a 0.6 m deep, 22 ha eutrophic fishpond Rod (Czech Republic) shows that the oxygen regime depended on the ecosystem state. Over the clearwater period in the early season, the DO level reflected ecosystem heterotrophy with relatively low daily DO oscillations. However, during the summer phytoplankton bloom, the fishpond was primarily autotrophic with extreme DO fluctuation. During late summer, a collapse of the phytoplankton bloom and an associated shift towards heterotrophy and DO deficit frequently occur. In-situ mesocosm experiments in Rod fishpond were conducted throughout 2018 and 2019 growing seasons, to address the importance of SOD to the oxygen regime. We enclosed the water column in transparent and opaque/dark plastic cylinders open or closed to the sediment. The results show that the proportional contribution of SOD to total respiration decreased from 70 to 90% at low phytoplankton biomass (expressed as Chlorophyll-a (Chl-a) concentration) to approximately 10% at phytoplankton bloom. At night, the difference between the oxygen consumption in the cylinders with or without sediment was statistically significant, when the concentration of Chl-a was 100 μg·L-1. This revealed that the impact of SOD is negligible at high phytoplankton biomass.
Although the effect of ambient temperature on cardiovascular disease (CVDs) has been well explored, studies using years of life lost (YLLs) as the outcome especially evaluating the average life loss per death attributable to temperatures were rare. We examine the associations between ambient temperature and YLLs of CVDs, and further quantify temperature-related life loss per death.
Daily YLL rates were calculated using death data from 364 locations across China during 2006-2017, and meteorological data were collected for the same period. A distributed-lag nonlinear model and meta-regression were applied to examine the relationships between temperature and YLL rates of CVDs. Subgroup analyses by age, gender, region, and cause-specific CVDs were investigated. The total YLLs and average YLLs per death attributable to temperature were further quantified to assess life loss caused by non-optimal temperature.
Both high and low temperatures significantly increased YLL rates of CVDs, with greater effects for cognificantly aggravated premature death of CVD, with CEDs being the most affected, and most of temperature-related life loss of CVD was attributed to moderate cold. Ridaforolimus mw Our findings imply that peoples with CEDs in moderate cold days are vulnerable populations, which may contribute to a better understanding the adverse effects and pathogenesis of temperature on CVDs.Measuring energy fluxes in a dense and high-rise urban area is extremely challenging, thus our knowledge in such area remains limited. This study assessed the surface energy fluxes and investigated the energy balance closure (EBC) over such complex urban surface in Hong Kong. Net radiation (QN), sensible (QH) and latent (QE) heat fluxes were measured using an eddy covariance system from September 2018 to August 2019. Anthropogenic heat flux (QF) was simulated by a large-scale urban energy model (i.e., LUCY) and validated by an anthropogenic heat database (i.e., AHE_KL). Storage heat flux (QS) was estimated by an objective hysteresis model (OHM). Among five energy terms, QF showed the largest values of around 750 Wm-2 especially in the afternoon. Whereas, QE varying within 150 Wm-2 showed the smallest values. The variation range of net radiation, sensible heat flux and storage heat was respectively from -50 to 600, 0 to 450 and -30 to 300 W m-2. EBC generally showed a negative relationship with surface heterogeneity. Best EBC was observed in the direction with a relatively constant and large aspect ratio, and with the most occurrence of unstable stratifications. The uncertainties of QH and QE fluxes were respectively estimated to be approximately 8% and 7%. The result of LUCY was consistent with that of AHE_KL. EBC was not sensitive to different coefficients estimating QS. This study helped to fill a gap in our understanding of surface energy and turbulent fluxes in compact cities with high-rise buildings and shed insights into the future installation of eddy covariance tower in similar areas. The required height of the eddy covariance tower in such urban sites might not be as restrictive as that in other urban areas with low-rise buildings or with low building density, thus making it more feasible to set up such observation towers.