-
Lowry Figueroa posted an update 7 hours, 32 minutes ago
224-5p level were both associated with better prognosis. Moreover, high miR-1224-5p level was an independent prognosis factor for GBM patients according to the cox regression analysis.
MiRNA-1224-5p could be a potential target for the prognosis and treatment in GBM.
MiRNA-1224-5p could be a potential target for the prognosis and treatment in GBM.
Lianhuaqingwen and Shuanghuanglian are drug treatment options for Corona Virus Disease 2019 (COVID-19). In China, use of traditional Chinese medicine with Shuanghuanglian or Lianhuaqingwen (for them, forsythiaside is the active antiviral and antibacterial component) in combination with azithromycin is common for the treatment of pediatric pneumonia. It is important to understand the reason why the combination of these compounds is better than a single drug treatment. This study aimed to explore the pharmacokinetic interaction between forsythiaside and azithromycin.
Twelve male Sprague-Dawley rats were randomly divided into an experimental group (Forsythia suspensa extract and azithromycin) and a control group (a single dose of Forsythia suspensa extract in 5% glucose solution). Plasma samples were collected at scheduled time points, and the high-performance liquid chromatography combined with ultraviolet method was used to determine the plasma forsythiaside concentration. Non-compartmental analysis and pohiaside concentration to provide antiviral and antibacterial activity.
Alzheimer’s disease (AD) is the most common age-related neurodegenerative disorder. Emerging evidence suggests that synaptic dysfunction is associated with the onset and progression of AD. Interestingly, Ginkgo biloba extract (EGb) is one of the most frequently investigated herbal medicines for enhancing cognition and alleviating neurodegenerative dementia. This study aimed to investigate the effect and the mechanism of EGb on AD-like synaptic disorders.
Scopolamine (SCO)-induced rats were used to mimic AD-like memory deficits. Morris water maze test and fear conditioning test were conducted to evaluate the memory status of rats in response to different treatments. Then, the synapse alterations were assessed by Golgi staining, and Western blotting was conducted to assess the protein expression of PSD95, GluN2B, synapsin-1, and synaptophysin. Reverse transcription quantitative polymerase chain reaction was applied to detect the mRNA expression of PSD95 and the levels of miR-1-3p/miR-206-3p.
EGb supplement alleviated the learning and memory deficits induced by SCO in behavioral experiments. Moreover, EGb treatment attenuated synaptic damage elicited by SCO, manifested as increased dendritic spine density and the proportion of mushroom-type spines in hippocampal neurons. Further investigation indicated that EGb rescued the expression of synaptic-related proteins, especially PSD95, and decreased the levels of miR-1-3p/miR-206-3p in the rat hippocampus.
The application of EGb effectively treats SCO-induced memory impairments probably by suppressing miR-1-3p/miR-206-3p and elevating the expression of PSD95.
The application of EGb effectively treats SCO-induced memory impairments probably by suppressing miR-1-3p/miR-206-3p and elevating the expression of PSD95.Saving body water by optimal reabsorption of water filtered by the kidney leading to excretion of urine with concentrations of solutes largely above that of plasma allowed vertebrate species to leave the aquatic environment to live on solid ground. Filtered water is reabsorbed for 70% and 20% by proximal tubules and thin descending limbs of Henle, respectively. These two nephron segments express the water channel aquaporin-1 located along both apical and basolateral membranes. In the proximal tubule, the paracellular pathway accounts for at least 30% of water reabsorption, and the tight-junction core protein claudin-2 plays a key role in this permeability. The ascending limb of Henle and the distal convoluted tubule are impermeant to water and are responsible for urine dilution. The water balance is adjusted along the collecting system, i.e. connecting tubule and the collecting duct, under the control of arginine-vasopressin (AVP). AVP is synthesized by the hypothalamus and released in response to an increaseof genetic origin or acquired. Hyponatremia is a common disorder most often related to free water excess relying on overstimulated or inappropriate AVP secretion. The assessment of blood volume is key for the diagnosis and treatment of hyponatremia, which can be classified as hypo-, eu-, or hypervolemic.The replication crisis has stimulated researchers around the world to adopt open science research practices intended to reduce publication bias and improve research quality. Open science practices include study pre-registration, open data, open access, and avoiding methods that can lead to publication bias and low replication rates. Although gambling studies uses similar research methods as behavioral research fields that have struggled with replication, we know little about the uptake of open science research practices in gambling-focused research. We conducted a scoping review of 500 recent (1/1/2016-12/1/2019) studies focused on gambling and problem gambling to examine the use of open science and transparent research practices. Our results showed that a small percentage of studies used most practices whereas 54.6% (95% CI [50.2, 58.9]) of studies used at least one of nine open science practices, each practice’s prevalence was 1.6% for pre-registration (95% CI [0.8, 3.1]), 3.2% for open data (95% CI [2.0, 5.1]), 0% for open notebook, 35.2% for open access (95% CI [31.1, 39.5]), 7.8% for open materials (95% CI [5.8, 10.5]), 1.4% for open code (95% CI [0.7, 2.9]), and 15.0% for preprint posting (95% CI [12.1, 18.4]). In all, 6.4% (95% CI [4.6, 8.9]) of the studies included a power analysis and 2.4% (95% CI [1.4, 4.2]) were replication studies. Exploratory analyses showed that studies that used any open science practice, and open access in particular, had higher citation counts. We suggest several practical ways to enhance the uptake of open science principles and practices both within gambling studies and in science more generally.Oxidative stress impairs functional recovery after intracerebral hemorrhage (ICH). Histone deacetylase 6 (HDAC6) plays an important role in the initiation of oxidative stress. However, the function of HDAC6 in ICH and the underlying mechanism of action remain elusive. We demonstrated here that HDAC6 knockout mice were resistant to oxidative stress following ICH, as assessed by the MDA and NADPH/NADP+ assays and ROS detection. HDAC6 deficiency also resulted in reduced neuronal apoptosis and lower expression levels of apoptosis-related proteins. Further mechanistic studies showed that HDAC6 bound to malate dehydrogenase 1 (MDH1) and mediated-MDH1 deacetylation on the lysine residues at position 121 and 298. MDH1 acetylation was inhibited in HT22 cells that were challenged with ICH-related damaging agents (Hemin, Hemoglobin, and Thrombin), but increased when HDAC6 was inhibited, suggesting an interplay between HDAC6 and MDH1. The acetylation-mimetic mutant, but not the acetylation-resistant mutant, of MDH1 protected neurons from oxidative injury. Furthermore, HDAC6 inhibition failed to alleviate brain damage after ICH when MDH1 was knockdown. Taken together, our study showed that HDAC6 inhibition protects against brain damage during ICH through MDH1 acetylation.Short-chain fatty acids activate antimicrobial component production in the intestine. However, their effects on mammary glands remain unclear. We investigated the effects of acetate and butyrate on antimicrobial component production in mammary epithelial cells (MECs) or leukocytes cultured in vitro and in mammary glands of lactating Tokara goats in vivo. Our results showed that butyrate enhanced the production of β-defensin-1 and S100A7 in MECs. Additionally, the infusion of butyrate into mammary glands through the teats enhanced β-defensin-1 and S100A7 concentrations in milk. The infusion of acetate also increased β-defensin-1 and S100A7 concentrations along with those of cathelicidin-2 and interleukin-8, which are produced by leukocytes. Furthermore, acetate promoted cathelicidin-2 and interleukin-8 secretion in leukocytes in vitro. These findings suggest that acetate and butyrate differentially upregulate antimicrobial component production in mammary glands, which could help to develop appropriate treatment for mastitis, thereby reducing economic losses and improving animal welfare in farming environments.
Right colectomy (RC) is a frequently performed procedure. Beneath standard conventional open surgery (COS), various minimally invasive techniques had been introduced. Several advantages had recently been described for robotic approaches over COS or conventional laparoscopy. Nevertheless, novel minimally invasive techniques require continuous benchmarking against standard COS to gain maximum patient safety. Bowel dysfunction is a frequent problem after RC. Together with general complication rates postoperative bowel recovery are used as surrogate parameters for postoperative patient outcome in this study.
Retrospective, 10-year single-center analysis of consecutive patients who underwent sequentially either COS (n = 22), robotic-assisted (ECA n = 39), or total robotic surgery (ICA n = 56) for oncologic RC was performed.
The conversion from robotic to open surgery rate was low (overall 3.2%). Slightly longer duration of surgery had been observed during the early phase after introduction of the robotic prothout compromises in oncologic results and patient safety. However, the total robotic approach is beneficial regarding postoperative bowel recovery and general patient outcome.
The current study reflects the institutional learning curve of oncologic RC during implementation of robotic surgery from robotic-assisted to total robotic approach without compromises in oncologic results and patient safety. However, the total robotic approach is beneficial regarding postoperative bowel recovery and general patient outcome.Quantum dots (QDs) have attracted much attention over the past decades due to their outstanding properties. However, obtaining QDs with excellent photoluminescence and quantum yields (QYs) from their aqueous synthesis is still a big concern. check details We herein present a green and facile synthesis of AgInS (AIS) QDs and AgInS-ZnS (AIS-ZnS) core-shell QDs using a combination of two capping agents (glutathione and sodium citrate). The temporal evolution of the optical properties is investigated by varying the reaction time and pH of the solution. The results show that the fluorescence intensity of the QDs increases as the reaction time increase, while the emission position blue-shift as the pH of the solution increase. An outstanding photoluminescence quantum yield (PLQY) of 90% is obtained at optimized synthetic conditions. The Fourier transform Infrared studies confirm efficient passivation of the QDs by the capping agents. The XRD analysis reveals that all the materials crystallize in the tetragonal crystalline phase, while the TEM micrographs of AIS-ZnS QDs reveal a spherical shape. The EDS analysis confirms the presence of Silver, Indium, Sulphide, and Zinc elements. The reported synthetic route is facile and eco-friendly.