-
Blanchard Dickerson posted an update 5 hours, 31 minutes ago
The lipophilic composition of Allium triquetrum L. bulbs, flowers and leaves was studied for the first time by GC-MS. Sixty compounds were firstly identified in A. triquetrum L. Fatty acids represented the major lipophilic family among the studied extracts, with (9Z,12Z,15Z)-octadeca-9,12,15-trienoic and (9Z,12Z)-octadeca-9,12-dienoic acids being the major constituents of this family. A long chain aliphatic ketone, namely hentriacontan-16-one, was mainly found in flowers and leaves. Flowers and leaves were also found to be rich in long chain aliphatic alkanes and alcohols, respectively. Sterols, monoglycerides, aromatic compounds and long chain aliphatic aldehydes were found in lower amounts. The antibacterial activity of A. triquetrum bulb, flower and leaf extracts against methicillin-resistant Staphylococcus aureus (MRSA) growth was in vitro assessed. Bulb and flower extracts showed significant MRSA growth inhibition. Selleck Vismodegib Overall, these valuable findings can contribute to the valorization of A. triquetrum L. as a source of value-added phytochemicals, specifically as antibacterial agents and for nutraceutical applications.Mononuclear zinc(ii) and cadmium(ii) complexes, ZnLCl2 (1), CdLCl2 (2), ZnL1Cl2·2H2O (3), and CdL1Cl2·2H2O (4), with chiral ligands containing a 2,2′-bipyridine moiety and natural terpene (+)-limonene (L) or (+)-3-carene (L1) moieties were synthesized. In these complexes the L and L1 ligands are shown to coordinate Zn2+ and Cd2+ ions through the 2,2′-bipyridine moiety. The acetamide group of the ligands interacts with M2+ ions by forming NM2+ and C[double bond, length as m-dash]OM2+ contacts and N-HCl hydrogen bonds with coordinated Cl- ions. In solutions the complexes have several conformers differing by the degree of the turn of the acetamide moiety relative to the ligand core and the type of its interaction with the coordination core. The ligands and complexes exhibit luminescence with the quantum yield increasing in the order ligand less then cadmium(ii) complex less then zinc(ii) complex. The complexes 3 and 4 demostrate excitation wavelength independent single-channel fluorescence. As opposed to 3 and 4, the complexes 1 and 2 demonstrate excitation wavelength dependent emission with nanosecond and microsecond lifetimes of the excited states. According to our TD-DFT calculations, an interplay of ligand centered and halide to ligand transitions facilitates two deactivation channels in 1 and 2 S1-S0 and T1-S0.With the depletion of uranium terrestrial deposits, researchers have focused on the development of adsorbents to extract radioactive uranium from seawater/wastewater. However, the artificial manipulation of adsorbents for the cost-effective extraction of radioactive uranium from large numbers of water samples is still significantly challenging. Herein, a facile yet versatile stepwise strategy has been reported for the fabrication of adsorbents. Magnesium hydroxide (Mg(OH)2) was fabricated via the in situ conversion of a natural ore powder (magnesite), whose unique internal pore structure is highly suitable for the development of highly efficient sorbents. The coordination interaction of the synthesized adsorbent with uranium was enhanced by further introducing inexpensive molecules with water-locking properties, which resulted in superior extraction capacity and low production cost. After careful calculation, the cost per kilogram of the adsorbent was found to be about $0.21. The adsorption behaviors of the synthesized adsorbent CMC-PAM/Mg(OH)2 were investigated by batch adsorption, flow-through column adsorption (in laboratory), and field adsorption experiments in natural seawater and river. Representatively, CMC-PAM/Mg(OH)2 was exceptional in extracting uranium not only at high concentrations with sufficient capacities in a wide pH range (1584.67 mg g-1 and 454.55 mg g-1 at pH = 5 and pH = 8, respectively), but also in trace quantities including uranium in a flow-through column (55.68 mg g-1), natural seawater (8.6 mg g-1), and river (6.7 mg g-1). Inspired by this excellent performance, the effects of competitive ions on the selective adsorption of uranium by CMC-PAM/Mg(OH)2 in simulated wastewater and seawater environments were further studied. Using a combination of FTIR spectroscopic and XPS studies, it was revealed that the amine and hydroxyl groups enhanced the overall uranyl affinity of the CMC-PAM/Mg(OH)2 composite.Self-assembled DNA nanostructures significantly contribute to DNA nanotechnology. Algorithmic guiding of the assembly of DNA arrays remains a challenge in nanoarchitecture. Usually, the more sophisticated a DNA nanoarchitecture, the more DNA connections with specific sequences are required. This study aimed to investigate the feasibility of using the minimum pairs of DNA connection strands to implement algorithm-based self-assembly with finite DNA origamis. We found that the DNA origami linking complexity was markedly reduced. By rotating and turning the origami tile in different linking directions, we obtained 2 × 2 arrays of DNA origamis using a pair of DNA connections, 2 × 4 arrays using two pairs of DNA connections, and 4 × 4 arrays using three pairs of connection strands. We further analysed the effects of distortion on array formation. Overall, this study presents a hierarchical assembly strategy with minimal connections to generate multi-scale DNA arrays.Polynuclear transition metal complexes have continuously attracted interest owing to their peculiar electronic and magnetic properties which are influenced by the symmetry and connectivity of the metal centres. Understanding the full electronic picture in such cases often becomes difficult owing to the presence of multiple bridges between metal centres. We have investigated the electronic structure of a Mn6 cage complex using computational and experimental approaches with the aim to understand the coupling between the manganese centres. The nature of the various coupling pathways has been determined using a novel methodology that involves perturbing the system while retaining the symmetry and analysing the effect on the coupling strength due to the perturbation. Furthermore, we have investigated the magnetic properties of this complex in higher oxidation states which reveals a switch in the nature of coupling from antiferromagnetic to ferromagnetic in addition to stabilisation of intermediate spin states.