• Lindholm Tennant posted an update 5 hours, 44 minutes ago

    Combining high hydrophilicity with charge neutrality, polyzwitterions are intensely explored for their high biocompatibility and low-fouling properties. Recent reports indicated that in addition to charge neutrality, the zwitterion’s segmental dipole orientation is an important factor for interacting with the environment. Accordingly, a series of polysulfobetaines with a novel architecture was designed, in which the cationic and anionic groups of the zwitterionic moiety are placed at equal distances from the backbone. They were investigated by in vitro biofouling assays, covering proteins of different charges and model marine organisms. All polyzwitterion coatings reduced the fouling effectively compared to model polymer surfaces of poly(butyl methacrylate), with a nearly equally good performance as the reference polybetaine poly(3-(N-(2-(methacryloyloxy)ethyl)-N,N-dimethylammonio)propanesulfonate). The specific fouling resistance depended on the detailed chemical structure of the polyzwitterions. Still, while clearly affecting the performance, the precise dipole orientation of the sulfobetaine group in the polyzwitterions seems overall to be only of secondary importance for their antifouling behavior.The development of low-cost and high-energy aqueous battery technologies is of significance for renewable and stationary energy applications. However, this development has been bottlenecked by poor conductivity, low capacity, and limited cycling stability of existing electrode materials. In this work, we report on an energetic aqueous copper ion system based on CuS nanosheet arrays, taking profit of high conductivity of CuS and efficient charge carrier of copper ions. Electrochemical results reveal a high capacity of 510 mAh g-1, robust rate capability of 497 mAh g-1 at a high rate of 7.5 A g-1, and ultrastable cycling by retaining 91% of the initial capacity over 2500 cycles. The charge-storage mechanism was systematically investigated by ex situ and in situ techniques involving a reversible transition from CuS to Cu7S4 and to Cu2S through the redox of Cu2+/Cu+. Moreover, we demonstrate a hybrid ion battery consisting of CuS positive electrode and Zn negative electrode, which affords an energy and power of 286 Wh kg-1 and 900 W kg-1, respectively, on the basis of both electrodes, exceeding many aqueous battery systems.The current study investigated the positive effects of blueberry anthocyanin-rich extracts (BAE) on either peripheral or hippocampal antioxidant defensiveness and established the connection of the improved antioxidant status with the altered fatty acid species and gut microbiota profile. High-fat diet-induced oxidative stress in C57BL/6 mice was attenuated by BAE administration, which was reflected by strengthened antioxidant enzymes, alleviated hepatic steatosis, and improved hippocampal neuronal status. Serum lipidomics analysis indicated that the fatty acid species were altered toward the elevated unsaturated/saturated ratio, along with phospholipid species toward enriched n-3 polyunsaturated fatty acid compositions. The modulated antioxidant pattern could be attributed to the increased bacteria diversity, stimulated probiotics (Bifidobacterium and Lactobacillus) and short-chain fatty acid (SCFA) producers (Roseburia, Faecalibaculum, and Parabacteroides) improved by anthocyanins and their metabolites, which improved the colon environment, characterized by promoted SCFAs, restored colonic mucosa, and reorganized microbial structure. Thus, anthocyanin-rich dietary intervention is a promising approach for the defensiveness in human oxidative damage and neurodegeneration.Nitrification inhibitors (NIs) are widely applied in soil to improve the nitrogen utilization efficiency. Currently, commonly used nitrification inhibitors, like 3,4-dimethylpyrazole phosphate (DMPP), are not resistant to high temperature and do not have a phosphate-solubilizing ability. In this paper, a novel polymer nitrification inhibitor (PNI) with nitrification inhibition ability, phosphate-solubilizing ability, and good thermal stability is chemically synthesized from acrylic acid (AA) and 3,4-dimethylpyrazole (DMPZ). The PNI has a high glass transition temperature (Tg ∼78 °C) and effective decomposition temperature (Td ∼216 °C). The good thermal stability makes it suitable for high tower granulation processes. The PNI demonstrates an excellent nitrification inhibition performance when the dosage is 0.5 wt % of the urea fertilizer and presents good phosphate-solubilizing ability when the volume ratio of PNI to water is about 11000. The PNI can be applied to the field to realize nitrogen immobilization and phosphate-solubilizing at the same time or be used as the synergistic additives for fertilizers such as water-soluble fertilizers, liquid fertilizers, and compound fertilizers.Aluminum-based metal-organic frameworks (Al-MOFs) have shown promise as commercially valuable materials due to the variety of applications, excellent thermal, hydrothermal, and chemical stabilities, and the abundance of aluminum. In this work, for the first time, we report the solvent-free synthesis of the aluminum trimesate (Al-BTC) MOFs (MIL-100(Al), MIL-96(Al), and MIL-110(Al)) with phase selectivity and high yield. These MOFs were traditionally prepared with HF, HNO3, and bulk solvents, but these methods struggled to produce pure-phase isolations. PMX 205 peptide The solvent-free strategy provides valuable insight into the future industrial scale-up production of the Al-MOFs and promotes the potential commercialization of such materials.A contamination with the ubiquitous radioactive fission product 137Cs cannot be assigned per se to its source. We used environmental samples with varying contamination levels from various parts of the world to establish their characteristic 135Cs/137Cs isotope ratios and thereby allow their distinction. The samples included biological materials from Chernobyl and Fukushima, historic ashed human lung tissue from the 1960s from Austria, and trinitite from the Trinity Test Site, USA. After chemical separation and gas reaction shifts inside a triple quadrupole ICP mass spectrometer, characteristic 135Cs/137Cs isotope signatures (all as per March 11, 2011) were obtained for Fukushima- (∼0.35) and Chernobyl-derived (∼0.50) contaminations, in agreement with the literature for these contamination sources. Both signatures clearly distinguish from the characteristic high ratio (1.9 ± 0.2) for nuclear-weapon-produced radiocesium found in human lung tissue. Trinitite samples exhibited an unexpected, anomalous pattern by displaying a low ( less then 0.