-
Rodgers List posted an update 5 hours, 36 minutes ago
On the other hand, IVM efficacy as a prophylactic agent was more evident and widely reported. In the most recent trials, novel nasal formulations of IVM were explored with the hope of an improved optimized effect.Enterovirus A71 (EV-A71) infection is a major cause of hand, foot, and mouth disease (HFMD), which may be occasionally associated with severe neurological complications. There is currently a lack of treatment options for EV-A71 infection. The Raf-MEK-ERK signaling pathway, in addition to its critical importance in the regulation of cell growth, differentiation, and survival, has been shown to be essential for virus replication. In this study, we investigated the anti-EV-A71 activity of vemurafenib, a clinically approved B-Raf inhibitor used in the treatment of late-stage melanoma. Vemurafenib exhibits potent anti-EV-A71 effect in cytopathic effect inhibition and viral load reduction assays, with half maximal effective concentration (EC50) at nanomolar concentrations. Mechanistically, vemurafenib interrupts both EV-A71 genome replication and assembly. These findings expand the list of potential antiviral candidates of anti-EV-A71 therapeutics.Previous studies have shown that chemical modification may increase the activity of proteins or confer novel activity to proteins. Some studies have indicated that myoglobin (Mb) is cytotoxic; however, the underlying mechanisms remain unclear. In this study, we investigated whether chemical modification of the carboxyl group by semicarbazide could promote the Mb cytotoxicity in human leukemia U937 cells and the underlying mechanism of semicarbazide-modified myoglobin (SEM-Mb)-induced U937 cell death. The semicarbazide-modified Mb (SEM-Mb) induced U937 cell apoptosis via the production of cleaved caspase-8 and t-Bid, while silencing of FADD abolished this effect. These findings suggest that SEM-Mb can induce U937 cell death by activating the death receptor-mediated pathway. The SEM-Mb inhibited miR-99a expression, leading to increased NOX4 mRNA and protein expression, which promoted SIRT3 degradation, and, in turn, induced ROS-mediated p38 MAPK phosphorylation. Activated p38 MAPK stimulated miR-29a-dependent tristetraprolin (TTP) mRNA decay. Downregulation of TTP slowed TNF-α mRNA turnover, thereby increasing TNF-α protein expression. The SEM-Mb-induced decrease in cell viability and TNF-α upregulation were alleviated by abrogating the NOX4/SIRT3/ROS/p38 MAPK axis or ectopic expression of TTP. Taken together, our results demonstrated that the NOX4/SIRT3/p38 MAPK/TTP axis induces TNF-α-mediated apoptosis in U937 cells following SEM-Mb treatment. A pathway regulating p38 MAPK-mediated TNF-α expression also explains the cytotoxicity of SEM-Mb in the human leukemia cell lines HL-60, THP-1, K562, Jurkat, and ABT-199-resistant U937. Furthermore, these findings suggest that the carboxyl group-modified Mb is a potential structural template for the generation of tumoricidal proteins.During the current pandemic, the gap between fundamental research and clinical practice has been narrowing at a faster pace than ever before. While clinical trials play the main role of confirming the safety and efficacy of new drugs, a drug’s introduction into clinical practice creates the need for further research in order to best position the use of the novel drug in terms of when, to whom, and how it would be best administered to achieve the best possible outcome under feasible clinical circumstances. We briefly present the results of a retrospective analysis of the characteristics of outpatients treated with molnupiravir in a tertiary care infectious disease hospital in Bucharest, Romania, between February and March 2022, when Romania was experiencing its fifth wave of COVID-19. A total of 46 outpatients received molnupiravir treatment and had complete clinical data available; of them, 56.5% (n = 20) were males and the median age was 48.5 years (IQR 37.8, 67.0 years). A total of 54.2% (n = 26) of patients had at least one chronic condition. Of the 45 patients who underwent lung CT imaging evaluation, 13 (28.9%) showed changes suggestive of COVID-19 pneumonia. COVID-19 vaccination status was strongly protective for pneumonia (p = 0.002). All patients were symptomatic, and molnupiravir was initiated at a mean time from onset of symptoms of 3.5 (±1.5) days. At phone follow-up 5 days after the initial evaluation and initiation of molnupiravir treatment, all patients, except for one, confirmed a favorable course under treatment, with no worsening of COVID-19 severity and improvement in symptoms; none of them progressed to respiratory failure or required hospitalization. In conclusion, treatment was well tolerated and associated a favorable outcome of COVID-19 in routine practice in a clinical population that was slightly older and had a smaller burden of comorbidities and a higher rate of COVID-19 vaccination compared to that from the pivotal trial.This research was designed to identify thermodynamically and kinetically stable lipidic self-emulsifying formulations through simple energy dynamics in addition to highlighting and clarifying common ambiguities in the literature in this regard. Proposing a model study, this research shows how most of the professed energetically stable systems are actually energetically unstable, subjected to indiscriminate and false characterization, leading to significant effects for their pharmaceutical applications. A self-emulsifying drug delivery system (SEDDS) was developed and then solidified (S-SEDDS) using a model drug finasteride. Physical nature of SEDDS was identified by measuring simple dynamics which showed that the developed dispersion was thermodynamically unstable. An in vivo study of albino rats showed a three-fold enhanced bioavailability of model drug with SEDDS as compared to the commercial tablets. The study concluded that measuring simple energy dynamics through inherent properties can distinguish between thermodynamically stable and unstable lipidic systems. It might lead to correct identification of a specific lipidic formulation and the application of appropriate characterization techniques accordingly. Future research strategies include improving their pharmaceutical applications and understanding the basic differences in their natures.Several studies support the notion that inflammation plays a role in the pathophysiology and treatment approaches of psychiatric illnesses, particularly mood disorders. KB-0742 datasheet Congruently, classic anti-inflammatory drugs were found efficacious in randomized clinical trials of patients with mood disorders. Moreover, accumulating data indicate that psychotropic drugs exhibit some anti-inflammatory effects. This study was undertaken to examine the efficacy of dexamethasone (a potent corticosteroid) and pentoxifylline (a methylxanthine drug with proven anti-tumor necrosis factor-α inhibitory activity) in behavioral models in rats, which were treated intraperitoneally with either dexamethasone or pentoxifylline for two weeks and then subjected to a battery of behavioral tests. Treatment with pentoxifylline, but not dexamethasone, was associated with antidepressant-like and anti-manic-like effects. The beneficial behavioral effects of pentoxifylline were accompanied by a prominent reduction in pro-inflammatory mediator levels in the brain. For the first time, the current work proves the efficacy of pentoxifylline against both mania-like and depressive-like behaviors. These results suggest that pentoxifylline may be a promising therapeutic intervention for patients with mood disorders. Taking into account the excellent tolerability profile of pentoxifylline in humans, it is warranted to conduct randomized clinical trials to investigate its therapeutic efficacy in patients with psychiatric disorders.Arabinoxylans (AX) microcapsules loaded with insulin were prepared by enzymatic gelation of AX, using a triaxial electrospray method. The microcapsules presented a spherical shape, with an average size of 250 µm. The behavior of AX microcapsules was evaluated using a simulator of the human intestinal microbial ecosystem. AX microcapsules were mainly (70%) degraded in the ascending colon. The fermentation was completed in the descending colon, increasing the production of acetic, propionic, and butyric acids. In the three regions of the colon, the fermentation of AX microcapsules significantly increased populations of Bifidobacterium and Lactobacillus and decreased the population of Enterobacteriaceae. In addition, the results found in this in vitro model showed that the AX microcapsules could resist the simulated conditions of the upper gastrointestinal system and be a carrier for insulin delivery to the colon. The pharmacological activity of insulin-loaded AX microcapsules was evaluated after oral delivery in diabetic rats. AX microcapsules lowered the serum glucose levels in diabetic rats by 75%, with insulin doses of 25 and 50 IU/kg. The hypoglycemic effect and the insulin levels remained for more than 48 h. Oral relative bioavailability was 13 and 8.7% for the 25 and 50 IU/kg doses, respectively. These results indicate that AX microcapsules are a promising microbiota-activated system for oral insulin delivery in the colon.Resveratrol (RSV) is a natural stilbene polyphenolic compound found in several plant species. It is characterized by antioxidant properties, and its role in controlling viral replication has been demonstrated for different viral infections. Despite its promising antiviral properties, RSV biological activity is limited by its low bioavailability and high metabolic rate. In this study, we optimized its structure by synthesizing new RSV derivatives that maintained the phenolic scaffold and contained different substitution patterns and evaluated their potential anti-influenza virus activity. The results showed that viral protein synthesis decreased 24 h post infection; particularly, the nitro-containing compounds strongly reduced viral replication. The molecules did not exert their antioxidant properties during infection; in fact, they were not able to rescue the virus-induced drop in GSH content or improve the antioxidant response mediated by the Nrf2 transcription factor and G6PD enzyme. Similar to what has already been reported for RSV, they interfered with the nuclear-cytoplasmic traffic of viral nucleoprotein, probably inhibiting cellular kinases involved in the regulation of specific steps of the virus life cycle. Overall, the data indicate that more lipophilic RSV derivatives have improved antiviral efficacy compared with RSV and open the way for new cell-targeted antiviral strategies.The aggressive triple-negative breast cancer (TNBC) is a challenging disease due to the absence of tailored therapy. The search for new therapies involves intensive research focusing on natural sources. Achillea fragrantissima (A. fragrantissima) is a traditional medicine from the Middle East region. Various solvent extracts from different A. fragrantissima plant parts, including flowers, leaves, and roots, were tested on TNBC MDA-MB-231 cells. Using liquid chromatography, the fingerprinting revealed rich and diverse compositions for A. fragrantissima plant parts using polar to non-polar solvent extracts indicating possible differences in bioactivities. Using the CellTiter-Glo™ viability assay, the half-maximal inhibitory concentration (IC50) values were determined for each extract and ranged from 32.4 to 161.7 µg/mL. The A. fragrantissima flower dichloromethane extract had the lowest mean IC50 value and was chosen for further investigation. Upon treatment with increasing A. fragrantissima flower dichloromethane extract concentrations, the MDA-MB-231 cells displayed, in a dose-dependent manner, enhanced morphological and biochemical hallmarks of apoptosis, including cell shrinkage, phosphatidylserine exposure, caspase activity, and mitochondrial outer membrane permeabilization, assessed using phase-contrast microscopy, fluorescence-activated single-cell sorting analysis, Image-iT™ live caspase, and mitochondrial transition pore opening activity, respectively.