• Rodriquez Oddershede posted an update 6 hours, 12 minutes ago

    Most animals have complex auditory systems that identify salient features of the acoustic landscape to direct appropriate responses. In fish, these features include the volume, frequency, complexity, and temporal structure of acoustic stimuli transmitted through water. Larval fish have simple brains compared to adults but swim freely and depend on sophisticated sensory processing for survival.1-5 Zebrafish larvae, an important model for studying brain-wide neural networks, have thus far been found to possess a rudimentary auditory system, sensitive to a narrow range of frequencies and without evident sensitivity to acoustic features that are salient and ethologically important to adult fish.6,7 Here, we have combined a novel method for delivering water-borne sounds, a diverse assembly of acoustic stimuli, and whole-brain calcium imaging to describe the responses of individual auditory-responsive neurons across the brains of zebrafish larvae. Our results reveal responses to frequencies ranging from 100 Hz to 4 kHz, with evidence of frequency discrimination from 100 Hz to 2.5 kHz. Frequency-selective neurons are located in numerous regions of the brain, and neurons responsive to the same frequency are spatially grouped in some regions. Using functional clustering, we identified categories of neurons that are selective for a single pure-tone frequency, white noise, the sharp onset of acoustic stimuli, and stimuli involving a gradual crescendo. see more These results suggest a more nuanced auditory system than has previously been described in larval fish and provide insights into how a young animal’s auditory system can both function acutely and serve as the scaffold for a more complex adult system.In an elaborate form of inter-species exploitation, many insects hijack plant development to induce novel plant organs called galls that provide the insect with a source of nutrition and a temporary home. Galls result from dramatic reprogramming of plant cell biology driven by insect molecules, but the roles of specific insect molecules in gall development have not yet been determined. Here, we study the aphid Hormaphis cornu, which makes distinctive “cone” galls on leaves of witch hazel Hamamelis virginiana. We found that derived genetic variants in the aphid gene determinant of gall color (dgc) are associated with strong downregulation of dgc transcription in aphid salivary glands, upregulation in galls of seven genes involved in anthocyanin synthesis, and deposition of two red anthocyanins in galls. We hypothesize that aphids inject DGC protein into galls and that this results in differential expression of a small number of plant genes. dgc is a member of a large, diverse family of novel predicted secreted proteins characterized by a pair of widely spaced cysteine-tyrosine-cysteine (CYC) residues, which we named BICYCLE proteins. bicycle genes are most strongly expressed in the salivary glands specifically of galling aphid generations, suggesting that they may regulate many aspects of gall development. bicycle genes have experienced unusually frequent diversifying selection, consistent with their potential role controlling gall development in a molecular arms race between aphids and their host plants.The evolution of mammals from their extinct forerunners, the non-mammalian synapsids, is one of the most iconic locomotor transitions in the vertebrate fossil record. In the limb skeleton, the synapsid-mammal transition is traditionally characterized by a shift from a sprawling limb posture, resembling that of extant reptiles and amphibians, to more adducted limbs, as seen in modern-day mammals. Based on proposed postural similarities between early synapsids and extant reptiles, this change is thought to be accompanied by a shift from ancestral reptile-like lateral bending to mammal-like sagittal bending of the vertebral column. To test this “lateral-to-sagittal” evolutionary paradigm, we used combinatorial optimization to produce functionally informed adaptive landscapes and determined the functional trade-offs associated with evolutionary changes in vertebral morphology. We show that the synapsid adaptive landscape is different from both extant reptiles and mammals, casting doubt on the reptilian model for early synapsid axial function, or indeed for the ancestral condition of amniotes more broadly. Further, the synapsid-mammal transition is characterized by not only increasing sagittal bending in the posterior column but also high stiffness and increasing axial twisting in the anterior column. Therefore, we refute the simplistic lateral-to-sagittal hypothesis and instead suggest the synapsid-mammal locomotor transition involved a more complex suite of functional changes linked to increasing regionalization of the backbone. These results highlight the importance of fossil taxa for understanding major evolutionary transitions.How and why complex organs evolve is generally lost to history. The mammalian placenta, for example, was derived from a single common ancestor that lived over 100 million years ago.1-3 Therefore, the selective factors favoring this complex trait remain obscure. Species in the live-bearing fish family Poeciliidae have independently evolved placentas numerous times while retaining closely related non-placental sister species.4-7 This provides the raw material to test alternative hypotheses for the evolution of the placenta. We assemble an extensive species-level dataset on reproductive mode, life histories, and habitat, and then implement phylogenetic comparative methods to test adaptive hypotheses for the evolution of the placenta. We find no consistent family-wide associations between placentation and habitat. However, placental species exhibit significantly reduced reproductive allotment and have a higher likelihood of exhibiting superfetation (the ability to gestate multiple broods at different developmental stages). Both features potentially increase body streamlining and enhance locomotor performance during pregnancy, possibly providing selective advantage in performance-demanding environments such as those with high predation or fast water flow. Furthermore, we found significant interactions between body size and placentation for offspring size and fecundity. Relative to non-placental species, placentation is associated with higher fecundity and smaller offspring size in small-bodied species and lower fecundity and larger offspring size in large-bodied species. This pattern suggests that there may be two phenotypic adaptive peaks, corresponding to two selective optima, associated with placentation one represented by small-bodied species that have fast life histories, and the second by large-bodied species with slow life histories.