-
Hvass Burke posted an update 2 days, 23 hours ago
5 and low SES were associated with mild and severe preeclampsia. We observed differences in associations between greenspace (500 m) and superimposed preeclampsia by neighborhood income and between greenspace (500 m) and severe preeclampsia by PM10, overall and among those living in higher SES neighborhoods. Less greenspace, high particulate matter, and high-poverty/low-income neighborhoods were associated with preeclampsia, and effect modification was observed between these exposures. Further research into exposure combinations and preeclampsia is warranted.Selenium and iodine are essential micronutrients for humans. They are often deficient in food supply due to low phytoavailable concentrations in soil. Agronomic biofortification of food crops is one approach to overcome micronutrient malnutrition. This study focused on a pre-launch exploration of German consumers’ willingness to purchase selenium- and/or iodine-biofortified apples. For this purpose, an online survey was carried out. In this context, consumers were asked to choose their most preferred apple product from a set card of product alternatives in a discrete choice experiment (DCE). The multinomial logit model results demonstrated that German consumers’ have a particular preference for iodine-biofortified apples. Furthermore, apple choice was mainly influenced by price, health claims, and plastic-free packaging material. Viewed individually, selenium did not exert an effect on product choice whereas positive interactions between both micronutrients exist.We used high-throughput sequencing to identify viruses on tomato samples showing virus-like symptoms. Samples were collected from crops in the Iberian Peninsula. Either total RNA or double-stranded RNA (dsRNA) were used as starting material to build the cDNA libraries. In total, seven virus species were identified, with pepino mosaic virus being the most abundant one. The dsRNA input provided better coverage and read depth but missed one virus species compared with the total RNA input. By performing in silico analyses, we determined a minimum sequencing depth per sample of 0.2 and 1.5 million reads for dsRNA and rRNA-depleted total RNA inputs, respectively, to detect even the less abundant viruses. Primers and TaqMan probes targeting conserved regions in the viral genomes were designed and/or used for virus detection; all viruses were detected by qRT-PCR/RT-PCR in individual samples, with all except one sample showing mixed infections. Three virus species (Olive latent virus 1, Lettuce ring necrosis virus and Tomato fruit blotch virus) are herein reported for the first time in tomato crops in Spain.The current review aimed to explore the association between urban greenspaces and health indicators. In particular, our aims were to analyze the association between publicly accessible urban greenspaces exposure and two selected health outcomes (objectively measured physical activity (PA) and mental health outcomes (MH)). Two electronic databases-PubMed/Medline and Excerpta Medica dataBASE (EMBASE)-were searched from 1 January 2000 to 30 September 2020. Only articles in English were considered. Out of 356 retrieved articles, a total of 34 papers were included in our review. Of those, 15 assessed the association between urban greenspace and PA and 19 dealt with MH. VX-765 nmr Almost all the included studies found a positive association between urban greenspace and both PA and MH, while a few demonstrated a non-effect or a negative effect on MH outcomes. However, only guaranteeing access is not enough. Indeed, important elements are maintenance, renovation, closeness to residential areas, planning of interactive activities, and perceived security aspects. Overall, despite some methodological limitations of the included studies, the results have shown almost univocally that urban greenspaces harbour potentially beneficial effects on physical and mental health and well-being.Wearable technologies are becoming a profitable means of monitoring a person’s health state, such as heart rate and physical activity. The use of the smartwatch is becoming consolidated, not only as a novelty but also as a very useful tool for daily use. In addition, other devices, such as helmets or belts, are beneficial for monitoring workers and the early detection of any anomaly. They can provide valuable information, especially in work environments, where they help reduce the rate of accidents and occupational diseases, which makes them powerful Personal Protective Equipment (PPE). The constant monitoring of the worker’s health can be done in real-time, through temperature, falls, noise, impacts, or heart rate meters, activating an audible and vibrating alarm when an anomaly is detected. The gathered information is transmitted to a server in charge of collecting and processing it. In the first place, this paper provides an exhaustive review of the state of the art on works related to electronics for humahe data in an alarm system.Spintronic based embedded magnetic random access memory (eMRAM) is becoming a foundry validated solution for the next-generation nonvolatile memory applications. The hybrid complementary metal-oxide-semiconductor (CMOS)/magnetic tunnel junction (MTJ) integration has been selected as a proper candidate for energy harvesting, area-constraint and energy-efficiency Internet of Things (IoT) systems-on-chips. Multi-VDD (low supply voltage) techniques were adopted to minimize energy dissipation in MRAM, at the cost of reduced writing/sensing speed and margin. Meanwhile, yield can be severely affected due to variations in process parameters. In this work, we conduct a thorough analysis of MRAM sensing margin and yield. We propose a current-mode sensing amplifier (CSA) named 1D high-sensing 1D margin, high 1D speed and 1D stability (HMSS-SA) with reconfigured reference path and pre-charge transistor. Process-voltage-temperature (PVT) aware analysis is performed based on an MTJ compact model and an industrial 28 nm CMOS technology, explicitly considering low-voltage (0.7 V), low tunneling magnetoresistance (TMR) (50%) and high temperature (85 °C) scenario as the worst sensing case. A case study takes a brief look at sensing circuits, which is applied to in-memory bit-wise computing. Simulation results indicate that the proposed high-sensing margin, high speed and stability sensing-sensing amplifier (HMSS-SA) achieves remarkable performance up to 2.5 GHz sensing frequency. At 0.65 V supply voltage, it can achieve 1 GHz operation frequency with only 0.3% failure rate.