• McClanahan Kemp posted an update 6 hours, 1 minute ago

    The microscopic examination of Giemsa-stained thin and/or thick blood films (Giemsa microscopy) is the standard method of malaria diagnosis. However, the results of the diagnosis significantly depend on the skills of clinical technicians. Furthermore, sample preparation and analysis are laborious and time-consuming. Therefore, in this study, we investigated if a commercially available fluorescent cell counter, LUNA-FL, was useful for the detection of Plasmodium parasite and the estimation of parasitemia. Whole blood samples from uninfected persons, spiked with P. falciparum-infected erythrocytes, were analysed. Most of the leucocytes and platelets were removed from whole blood samples with SiO2-nanofiber filters set on spin columns. The filtered samples were stained with acridine orange, and automatic detection, as well as counting of erythrocytes and parasites, were performed using LUNA-FL. Whole blood, with various levels of parasites, was analysed by Giemsa microscopy or with LUNA-FL to estimate parasitemia, and a comparative analysis was performed. The coefficient determination value of the regression line was high (R2 = 0.98), indicating that accurate quantitative parasite detection could be performed using LUNA-FL. LUNA-FL has a low running cost; it is compact, fast, and easy to operate, and may therefore be useful for point-of-care testing in the endemic areas.Saturated fatty acids with different chain lengths have different biological activities, but little is known about very-long-chain saturated fatty acids (VLCSFAs). This study investigated the associations between the circulating VLCSFAs and cardiovascular health. This community-based cohort study included 2198 adults without carotid artery plaques (CAPs) at baseline. The percentage of baseline erythrocyte VLCSFA (arachidic acid (C200), behenic acid (C220), and lignoceric acid (C240)) was measured by gas chromatography. The presence of CAPs was determined at baseline and every 3 years thereafter by ultrasound examination. A meta-analysis was conducted to summarize the pooled associations between circulating VLCSFAs and the risk of cardiovascular diseases (CVDs). During a median of 7.2 years of follow-up, 573 women (35.1%) and 281 men (49.6%) were identified as CAP incident cases. VLCSFAs were inversely related with CAP risk in women (all p-trend less then 0.05) but not in men. Multivariate adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) of CAPs for the highest (vs. lowest) quartile were 0.80 (0.63-1.01) for C200, 0.71 (0.56-0.89) for C220, 0.75 (0.59-0.94) for C240, and 0.69 (0.55-0.87) for total VLCSFAs in women. The pooled HRs (95% CIs) of CVDs for the highest (vs. lowest) circulating VLCSFAs from seven studies including 8592 participants and 3172 CVD events were 0.67 (0.57-0.79) for C200, 0.66 (0.48-0.90) for C220, and 0.57 (0.42-0.79) for C240, respectively. Our findings suggested that circulating VLCSFAs were inversely associated with cardiovascular health.The capacity of adult muscle to regenerate in response to injury stimuli represents an important homeostatic process. Regeneration is a highly coordinated program that partially recapitulates the embryonic developmental program and involves the activation of the muscle compartment of stem cells, namely satellite cells, as well as other precursor cells, whose activity is strictly dependent on environmental signals. However, muscle regeneration is severely compromised in several pathological conditions due to either the progressive loss of stem cell populations or to missing signals that limit the damaged tissues from efficiently activating a regenerative program. It is, therefore, plausible that the loss of control over these cells’ fate might lead to pathological cell differentiation, limiting the ability of a pathological muscle to sustain an efficient regenerative process. This Special Issue aims to bring together a collection of original research and review articles addressing the intriguing field of the cellular and molecular players involved in muscle homeostasis and regeneration and to suggest potential therapeutic approaches for degenerating muscle disease.Anoctamin1 (ANO1), a calcium-activated chloride channel, is frequently overexpressed in several cancers, including human prostate cancer and oral squamous cell carcinomas. ANO1 plays a critical role in tumor growth and maintenance of these cancers. In this study, we have isolated two new compounds (1 and 2) and four known compounds (3-6) from Mallotus apelta. These compounds were evaluated for their inhibitory effects on ANO1 channel activity and their cytotoxic effects on PC-3 prostate cancer cells. Interestingly, compounds 1 and 2 significantly reduced both ANO1 channel activity and cell viability. Electrophysiological study revealed that compound 2 (Ani-D2) is a potent and selective ANO1 inhibitor, with an IC50 value of 2.64 μM. Ani-D2 had minimal effect on cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel activity and intracellular calcium signaling. Selleck RMC-9805 Notably, Ani-D2 significantly reduced ANO1 protein expression levels and cell viability in an ANO1-dependent manner in PC-3 and oral squamous cell carcinoma CAL-27 cells. In addition, Ani-D2 strongly reduced cell migration and induced activation of caspase-3 and cleavage of PARP in PC-3 and CAL-27 cells. This study revealed that a novel ANO1 inhibitor, Ani-D2, has therapeutic potential for the treatment of several cancers that overexpress ANO1, such as prostate cancer and oral squamous cell carcinoma.Cancer cells gain drug resistance through a complex mechanism, in which nuclear factor-κB (NF-κB) and interleukin-1β (IL-1β) are critical contributors. Because NACHT, LRR and PYD domains-containing protein (NLRP) inflammasomes mediate IL-1β maturation and NF-κB activation, we investigated the role of inflammasome sensor NLRP1 in acquired drug resistance to temozolomide (TMZ) in melanoma. The sensitivity of melanoma cells to TMZ was negatively correlated with the expression levels of O6-methylguanine-DNA methyltransferase (MGMT), the enzyme to repair TMZ-induced DNA lesions. When MGMT-low human melanoma cells (1205Lu and HS294T) were treated with TMZ for over two months, MGMT was upregulated, and cells became resistant. However, the resistance mechanism was independent of MGMT, and the cells that acquired TMZ resistance showed increased NLRP1 expression, NLRP inflammasome activation, IL-1β secretion, and NF-κB activity, which contributed to the acquired resistance to TMZ. Finally, blocking IL-1 receptor (IL-1R) signaling with IL-1R antagonist decreased TMZ-resistant 1205Lu tumor growth in vivo.