• Costello Tobin posted an update 3 hours, 17 minutes ago

    DNAzymes with nucleic acid-cleaving catalytic activity are increasing in versatility through concerted efforts to discover new sequences with unique functions, and they are generating excitement in the sensing community as cheap, stable, amplifiable detection elements. This review provides a comprehensive list and detailed descriptions of the DNAzymes identified to date, classified by their associated small molecule or ion needed for catalysis; of note, this classification clarifies conserved regions of various DNAzymes that are not obvious in the literature. Furthermore, we detail the breadth of functionality of these DNA sequences as well as the range of reaction conditions under which they are useful. In addition, the utility of the DNAzymes in a variety of sensing and therapeutic applications is presented, detailing both their advantages and disadvantages. We have earlier demonstrated sensitive detection of low the volatile nerve agents Tabun, Cyclosarin and VX by using handheld Raman instrumentation in conjunction with surface-enhanced Raman scattering (SERS) attained with gold and silver coated Si nanopillar substrates. In the present proof-of-concept study, the gold substrates chemically are functionalized to realize selectivity towards organophosphorus compounds (OPs) with high sensitivity. A potential capturer and reporter molecule, chemical nerve agent antidote, 4-pyridine amide oxime, is evaluated due to its high Raman cross section, high chemical affinity towards gold, and binding specificity to the target substances Tabun, VX and Cyclosarin via the oxime group. G150 research buy Upon selective and covalent binding, the SERS probe undergoes structural changes which are reflected in the spectral SERS responses, making it suitable for indirect monitoring of nerve agents in aqueous solution. With the probe attached to the hotspots of Au-coated Si nanopillars, the SERS signals distinctly discriminate between specific and non-specific analyte binding of Tabun, Cyclosarin and VX down to sub ppm levels. SERS spectrum of 4-PAO is measured after microliter drop coating of aqueous sample solution onto the functionalized substrates and subsequent water evaporation from surfaces. This binding assay is complemented by letting functionalized substrates being immersed into sample solutions 1 h before measuring. Binding specific SERS response decreases in following order Tabun > VX > Cyclosarin. Overall, the concept looks promising, as expected the candidate probe 4-PAO introduces selectivity to the nanopillar gold substrates without loss of sensitivity. Lateral flow immunoassay (LFIA) biosensor is a paper-based tool and widely utilized in various fields. Here, we developed a novel LFIA biosensor by introducing Co3O4 nanoparticles (NPs) as signal labels for highly sensitive detection of 3-amino-2-oxazolidinone (AOZ), a metabolite of furazolidone. The characteristic brown color of Co3O4 NPs enabled AOZ to be visually detected by the LFIA. Significantly, the size of Co3O4 NPs is relatively small compared with most of other signal labels, which could remarkably reduce steric hindrance, increase immunoreaction probability and shorten the analysis time. Under optimal conditions, the novel Co3O4 NPs-LFIA could possess high sensitivity for the detection of AOZ with a detection limit of 0.4 ng mL-1 by naked eyes, which was at least 3-fold improved than that of the conventional gold nanoparticles (GNPs) based LFIA. Moreover, the detection could be achieved within 6 min and without cross-reactions with other analogue small molecules. Taking merits of convenience, rapid and sensitivity, the proposed Co3O4 NPs-LFIA may be readily adapted for the detection of other small molecules. V.The combined LIBS and ICP HRMS analysis of 13 tea samples are studied in view of identification of tea geographical origin. The elemental signature provided by LIBS spectra is treated by principal component analysis followed by partial least square discriminant analysis and factorial discriminant analysis. Selected element lines are found efficient to discriminate most sample groups. Data analysis model is improved by variable selection and the isotopic ratio 11B/10B was employed to improve the prediction capacity of the model. The alkaline earth Ba, Ca, Mg, Sr and alkaline Rb, Na are easily detected by the LIBS system and these elements are important to classify sample according to their geographical origin. Minor elements like P, S, Fe, B … also bring discriminant information. A five clusters model gave best correct identification in a cross validation test (94.2%). This method also allowed to identify the origin of four unknown teas. In this study the use of FDA or PLS DA after the PCA examination of the LIBS/ICP MS data led to similar conclusions for fast classification of the tea samples and identification of the geographical origin of the four unknown teas. MiRNAs are known to be involved in a series of diseases, including breast cancer, and they have the potential to serve as diagnostic/prognostic markers and therapeutic targets. A prerequisite for miRNAs to be applied in clinical practice is the quantitative profiling of their expression. However, the majority of current assays used in miRNA detection are highly enzyme-dependent. In this study, a novel enzyme-free assay was developed that relies on stacking hybridization and a photocleavable DNA-PL-peptide probe, which contains a reporter peptide (AVLGVDPFR), a photocleavable o-nitrobenzyl derivative linker and a detection DNA sequence that is complementary to a part of the target miRNA (e.g., miR-21, miR-125a or miR-200c). Stacking hybridization enabled the DNA-PL-peptide probe to capture DNA in a contiguous tandem arrangement to generate a long DNA single strand complementary to the target miRNA. Then, photolysis was initiated to rapidly release the reporter peptide, and the reporter peptide was ultimately monitored by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In this experiment, the parameters linked with photorelease, binding, conjugation and hybridization were characterized. The results showed that the assay time was significantly shortened, and the detection specificity was improved. After validation of the assay, the target miRNA level was determined in human breast cells and tissue samples. The results demonstrated that photocleavable materials coupled with mass spectrometric detection have great potential in clinical practice.