-
Banks Hussein posted an update 3 hours, 55 minutes ago
Thus, a dual pathway in ripening and SlMET1-mediated epigenetics coordinates the blockage of seed vivipary.Skeletal muscle biopsy remains an important investigative tool in the diagnosis of a variety of muscle disorders. Traditionally, someone with a limb-girdle muscle weakness, myopathic changes on electrophysiology and raised serum creatine kinase (CK) would have a muscle biopsy. However, we are living through a genetics revolution, and so do all such patients still need a biopsy? When should we undertake a muscle biopsy in patients with a distal, scapuloperoneal or other patterns of muscle weakness? When should patients with myositis, rhabdomyolysis, myalgia, hyperCKaemia or a drug-related myopathy have a muscle biopsy? What does normal muscle histology look like and what changes occur in neurogenic and myopathic disorders? As with Kipling’s six honest serving men, we hope that by addressing these issues we can all become more confident about when to request a muscle biopsy and develop clearer insights into muscle pathology.Chimeric antigen receptor (CAR) T-cell therapy is one of the most innovative therapies for haematological malignancies to emerge in a generation. Clinical studies have shown that a single dose of CAR T-cells can deliver durable clinical remissions for some patients with B-cell cancers where conventional therapies have failed.A significant complication of CAR therapy is the immune effector cell-associated neurotoxicity syndrome (ICANS). This syndrome presents a continuum from mild tremor to cerebral oedema and in a minority of cases, death. Management of ICANS is mainly supportive, with a focus on seizure prevention and attenuation of the immune system, often using corticosteroids. Parallel investigation to exclude other central nervous system pathologies (infection, disease progression) is critical. In this review, we discuss current paradigms around CAR T-cell therapy, with a focus on appropriate investigation and management of ICANS.Background Mutations in the gene that encodes the lysosomal cystine transporter cystinosin cause the lysosomal storage disease cystinosis. Defective cystine transport leads to intralysosomal accumulation and crystallization of cystine. The most severe phenotype, nephropathic cystinosis, manifests during the first months of life, as renal Fanconi syndrome. The cystine-depleting agent cysteamine significantly delays symptoms, but it cannot prevent progression to ESKD and does not treat Fanconi syndrome. This suggests the involvement of pathways in nephropathic cystinosis that are unrelated to lysosomal cystine accumulation. check details Recent data indicate that one such potential pathway, lysosome-mediated degradation of autophagy cargoes, is compromised in cystinosis. Methods To identify drugs that reduce levels of the autophagy-related protein p62/SQSTM1 in cystinotic proximal tubular epithelial cells, we performed a high-throughput screening on the basis of an in-cell ELISA assay. We then tested a promising candidate in cells derived from patients with, and mouse models of, cystinosis, and in preclinical studies in cystinotic zebrafish. Results Of 46 compounds identified as reducing p62/SQSTM1 levels in cystinotic cells, we selected luteolin on the basis of its efficacy, safety profile, and similarity to genistein, which we previously showed to ameliorate other lysosomal abnormalities of cystinotic cells. Our data show that luteolin improves the autophagy-lysosome degradative pathway, is a powerful antioxidant, and has antiapoptotic properties. Moreover, luteolin stimulates endocytosis and improves the expression of the endocytic receptor megalin. Conclusions Our data show that luteolin improves defective pathways of cystinosis and has a good safety profile, and thus has potential as a treatment for nephropathic cystinosis and other renal lysosomal storage diseases.Despite mounting evidence suggesting the involvement of the immune system in regulating brain function, the specific role of immune and inflammatory cells in neurodegenerative diseases remain poorly understood. In this study, we report that depletion of NK cells, a type of innate lymphocytes, alleviates neuroinflammation, stimulates neurogenesis, and improves cognitive function in a triple-transgenic Alzheimer disease (AD) mouse model. NK cells in the brains of triple-transgenic AD mouse model (3xTg-AD) mice exhibited an enhanced proinflammatory profile. Depletion of NK cells by anti-NK1.1 Abs drastically improved cognitive function of 3xTg-AD mice. NK cell depletion did not affect amyloid β concentrations but enhanced neurogenesis and reduced neuroinflammation. Notably, in 3xTg-AD mice depleted of NK cells, microglia demonstrated a homeostatic-like morphology, decreased proliferative response and reduced expression of neurodestructive proinflammatory cytokines. Together, our results suggest a proinflammatory role for NK cells in 3xTg-AD mice and indicate that targeting NK cells might unlock novel strategies to combat AD.Recent studies indicate that glucose metabolism is altered in rheumatoid arthritis. We hypothesize that Pkm2, as a key regulatory enzyme of glycolysis pathway, triggers the activation of macrophages (Mφ), which results in proinflammatory cytokine production during the arthritis progress. In this study, Pkm2 was found to be overexpressed in ED1-positive Mφ in spleens and synovial tissues from arthritic rats via immunofluorescence, Western blotting, and quantitative RT-PCR. To reveal the role of Pkm2, Dark Agouti rats were treated with either Pkm2 enzyme inhibitor shikonin or the RNA interference plasmids of Pkm2 and negative control plasmids, respectively, via i.p. injection. Pkm2 intervention could alleviate the severity of pristane-induced arthritis in aspects of the macroscopic arthritis score, perimeter changes of midpaw, and the synovitis and destruction of the bone and cartilage as well as reduce the ED1 and p-Stat1-positive cell population in rat synovial tissues. Silencing Pkm2 by RNA interference in classical activated rat and mouse Mφ resulted in less Tnf-α, Il-1β production via Stat1 signaling. Collectively, Pkm2 is highly expressed in ED1-positive Mφ of spleens and synovial tissues from arthritic rats and promotes Mφ activation via Stat1 signaling. Pkm2 might be a promising selective metabolic target molecule for rheumatoid arthritis treatment.