-
Cunningham Barefoot posted an update 11 hours, 38 minutes ago
Overweight/obesity was mentioned by many countries as an obstacle to good health and long life, which increases risk of diseases and disorders. Chlorin e6 chemical Previous studies suggested that the chronic low-grade inflammation present in the body was considered as the essential pathogenesis for obesity. Chrysin is extracted from traditional Chinese medicine Oroxylum indicum (Linn.) Kurz and plays a superior anti-obesity role. Chrysin could reduce the lipid depot by inhibiting the obesity-related inflammation in adipose tissue. However, the target protein for chrysin to exert its anti-obesity role are not verified.
The present study aimed to screen and validate the target protein for chrysin to reduce the lipid depot in palmitic acid-induced 3T3-L1 adipocytes.
Obesity model was established employing 0.5mmol/L palmitic acid-induced 3T3-L1 adipocytes through “Cocktails” method. Two-dimensional gel electrophoresis (2-DE) combined with liquid chromatography-mass spectrometry (LC-MS) was applied to analyze the differentiallyrds along with the increase in chrysin concentration, meanwhile the absorbance spectra of HSP-60 from 200 to 220nm and from 265 to 280 nm shifted slightly upwards along with the increase in chrysin concentrations. The results indicated the conjugated structures between chrysin and ANXA2 or HSP-60. Fluorescence quenching further suggested a spontaneous interaction between chrysin and ANXA2 or HSP-60. Finally, molecular docking identified the main binding amino acids between ANXA2 and chrysin were Ser22, Tyr24, Pro267, Val298, Asp299, and Lys302.
Chrysin can reduce the amount of triglycerides by directly downregulating the inflammation-related target proteins ANXA2 and HSP-60, exerting an anti-obesity role.
Chrysin can reduce the amount of triglycerides by directly downregulating the inflammation-related target proteins ANXA2 and HSP-60, exerting an anti-obesity role.
Different plants are used for the treatment of various ailments and Acorus calamus L. is one such plant found in Western Himalaya. Rhizome of this plants has ethnomedicinal significance, as its rhizome is used for curing fever, pain and inflammation. An attempt has been made to alter the phytochemicals and increase its antioxidant property in a sustainable way with the help of mycorrhizal inoculation.
Study of mycorrhizal (Funneliformis mosseae) impact on the biological activities and phytochemical profile of A. calamus L. rhizome and in silico studies of phytochemicals for their anti-inflammatory property.
F. mosseae was mass multiplied by single spore culture and then A. calamus rhizomes were inoculated with it. Antioxidant potential of rhizome extract was observed by DPPH and FRAP assays and the phytochemical profiling was done with GC-MS analysis. For observing antimicrobial activity disc diffusion method was employed. Dominant phytochemicals α-asarone and monolinolein TMS were chosen for molecular docking studies against four receptors (4COX, 2AZ5, 5I1B, 1ALU).
There was increase in antioxidant activity of rhizome extract after mycorrhizal inoculation. However, no change in antimicrobial activity was observed in the plant after mycorrhizal inoculation. The comparison in phytochemicals was observed by GC-MS analysis which showed qualitative and quantitative variation in biochemical content in plants. The phytochemical, α-asarone and monolinolein TMS showed highest docking score and least binding energy against 1ALU and 4COX respectively for anti-inflammatory activity.
Medicinal plants are potential source of antioxidants which can be increased by mycorrhizal inoculation without addition of chemical fertilizers and also results in altering the phytochemical composition.
Medicinal plants are potential source of antioxidants which can be increased by mycorrhizal inoculation without addition of chemical fertilizers and also results in altering the phytochemical composition.
Myanmar’s Mon people largely depend on a traditional medical system for health care, however, information about their medical plants is rare in the current literature. In this first ethnobotanical study of Mon traditional medicinal plants (MTMs), we attempt to answer three research questions 1) What species are used as MTMs by the Mon people and what diseases can be treated with these MTMs? 2) What are the general characteristics of these MTMs? 3) Which species and their usages have high consensus of knowledge?
We aimed (1) to document both the diversity of medicinal plants used by the Mon people and their knowledge of the therapeutic usages of these plants; and (2) to quantitatively identify the most well-known medicinal plant species and prevalent diseases treated by these species, and to evaluate the status of scientific research and application for each of these species.
Ethnobotanical surveys and interviews were carried out in 10 villages in four townships of Mon State, Myanmar in 2018. Data were c still function as an important component of the health care of the Mon people in Myanmar, and a systematic documentation of the local knowledge of MTMs would be of great value in the future. Resource monitoring, phytochemical and pharmacological research and evidence-based drug development are suggested to promote the use of MTMs and aid drug discovery.
Benzoinum (Styraceae) is a traditional Chinese medicine used to treat stroke and other cardio-cerebrovascular diseases for thousands of years. Benzoinum has also proven to have diverse pharmacological activity, but the neuroprotection mechanism of apoptosis in ischaemic stroke was not determined.
To investigate the protective effect of a neurovascular unit (NVU) and the mechanisms of benzoinum on cerebral ischaemic rats.
The neuroprotective activity of benzoinum against middle cerebral artery occlusion (MCAO)-induced cerebral ischaemic injury. Neurological scores, 2,3,5-Triphenyltetrazolium chloride (TTC) staining, and hematoxylin-eosin staining (HE) staining were conducted to evaluate the neurological damage. Infarction rate and denatured cell index (DCI) were also calculated. The ultrastructure of neuron and blood-brain-barrier (BBB) was observed by transmission electron microscopy (TEM). Immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) were used to detect Bax, Bcl-2 and Caspase 3 expression.