• Stuart Zachariassen posted an update 4 hours, 30 minutes ago

    The P2X7 receptor (P2X7R) is an ATP-gated ion channel known for its proinflammatory activity. Despite its participation in host defense against pathogens, the role played in viral infections, notably those caused by herpes viruses, has been seldom studied. Here we investigated the effect of P2X7R expression on human herpes virus 6 A (HHV-6A) infection of P2X7R-expressing HEK293 cells. We show that functional P2X7R increases while its blockade decreases viral load. Interestingly, HHV-6A infection was enhanced in HEK293 cells transfected with P2X7R cDNA bearing the gain of function 489C>T SNP (rs208294, replacing a histidine for tyrosine at position 155). The P2X7R 489C>T polymorphism correlated with HHV-6A infection also in a cohort of 50 women affected with idiopathic infertility, a condition previously shown to correlate with HHV-6A infection. None of the infertile women infected by HHV-6A was homozygote for 489CC genotype, while on the contrary HHV-6A infection significantly associated with the presence of the rs208294 allele. Levels of soluble human leukocyte antigen G (sHLA-G), a factor promoting embryo implant, measured in uterine flushings negatively correlated with the 489TT genotype and HHV-6A infection, while proinflammatory cytokines interleukins 1α (IL-1α), 1β (IL-1β), and 8 (IL-8) positively correlated with both the 489T allele presence and viral infection. Taken together these data point to the P2X7R as a new therapeutic target to prevent HHV-6A infection and the associated infertility. Copyright © 2020 Pegoraro, Bortolotti, Marci, Caselli, Falzoni, De Marchi, Di Virgilio, Rizzo and Adinolfi.Mitochondrial biosynthesis regulated by the PGC-1α-NRF1-TFAM pathway is considered a novel potential therapeutic target to treat heart failure (HF). Perindopril (PER) is an angiotensin-converting enzyme inhibitor that has proven efficacy in the prevention of HF; however, its mechanism is not well established. In this study, to investigate the mechanisms of PER in cardiac protection, a rat model of cardiomyopathy was established by continuous isoproterenol (ISO) stimulation. Changes in the body weight, heart weight index, echocardiography, histological staining, mitochondrial microstructure, and biochemical indicators were examined. Our results demonstrate that PER reduced myocardial remodeling, inhibited deterioration of cardiac function, and delayed HF onset in rats with ISO-induced cardiomyopathy. PER markedly reduced reactive oxygen species (ROS) production, increased the levels of antioxidant enzymes, inhibited mitochondrial structural destruction and increases the number of mitochondria, improved the function of the mitochondrial respiratory chain, and promoted ATP production in myocardial tissues. In addition, PER inhibited cytochrome C release in mitochondria and caspase-3 activation in the cytosol, thereby reducing the apoptosis of myocardial cells. Notably, PER remarkably up-regulated the mRNA and protein expression levels of Sirtuin 3 (SIRT3), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), nuclear respiratory factor 1 (NRF1), and mitochondrial transcription factor A (TFAM) in myocardial cells. Collectively, our results suggest that PER induces mitochondrial biosynthesis-mediated enhancement of SIRT3 and PGC-1α expression, thereby improving the cardiac function in rats with ISO-induced cardiomyopathy. Copyright © 2020 Zhu, Li, Chen, Cui, Huang and Qi.Pathological conditions such as joint immobilization, long-time bed rest, or inactivity may result in disuse-induced muscle wasting and dysfunction. selleck chemicals llc To investigate the effect of dulaglutide, a long-acting glucagon-like peptide-1 receptor agonist, on disuse muscle atrophy, disuse condition was induced by spiral wire immobilization in C57BL/6 mice and the mice were treated with dulaglutide. Dulaglutide treatment effectively improved muscle function and increased muscle mass compared with vehicle treatment. Dulaglutide inhibited the decrease of muscle fiber size and the expression of atrophic factors such as myostatin, atrogin-1/MAFbx, and muscle RING-finger protein-1 in immobilized mice. In addition, dulaglutide inhibited nuclear factor kappa B activation, leading to a decrease in the mRNA levels of proinflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 in muscle of immobilized mice. Dulaglutide suppressed the expression of apoptotic markers such as caspase-3, cleaved poly-ADP ribose polymerase, and Bax under immobilization condition and increased the expression of heat shock protein 72 (Hsp72), which is related to the amelioration of inflammation and apoptosis during disuse time. Further study showed that dulaglutide could induce Hsp72 expression via the regulation of 5′-AMP-activated protein kinase signaling. Our data suggest that dulaglutide could exert beneficial effects against disuse-induced muscle atrophy. Copyright © 2020 Nguyen, Choi and Jun.Eugenol, as an active compound isolated from Acorus gramineus, has been shown to protect against cerebral ischemia-reperfusion (I/R) injury. Nonetheless, the detailed neuroprotective mechanisms of eugenol in cerebral I/R injury have not been elaborated. In the present study, cerebral I/R injury model was established by middle cerebral artery occlusion (MCAO) in rats. HT22 cells were subjected to oxygen-glucose deprivation/reperfusion (OGD/R) to mimic cerebral I/R injury in vitro. The results showed that eugenol pre-treatment relieved cerebral I/R injury as evidenced by improving neurological deficits and reducing infarct volume. Autophagy was induced by MCAO, which was further promoted by eugenol administration. Moreover, rapamycin, an activator of autophagy, promoted eugenol-induced decreases in neurological score, infarct volume, brain water content, and apoptosis. However, pretreatment with 3-MA, an inhibitor of autophagy, led to the opposite results. Similarly, eugenol pretreatment increased the viability and restrained apoptosis of OGD/R-challenged HT22 cells. OGD/R-induced autophagy was strengthened by eugenol. Mechanically, eugenol promoted autophagy through regulating AMPK/mTOR/P70S6K signaling pathway in vivo and in vitro. In conclusion, pretreatment with eugenol attenuated cerebral I/R injury by inducing autophagy via AMPK/mTOR/P70S6K signaling pathway. Copyright © 2020 Sun, Wang, Zhang, Lu, Duan, Ju, Zhuang and Jiang.