• Hawkins Wilhelmsen posted an update 4 hours, 48 minutes ago

    In contrast, only Il22ra-/- mice lose weight after Citrobacter rodentium infection. Altogether, our data suggest that specific targeting of the noncanonical STAT3 activation by IL-22 could serve to treat psoriasis-like skin inflammation without affecting IL-22‒dependent tissue repair or barrier defense at other sites.Opportunistic bacteria strategically dampen their virulence to allow them to survive and propagate in hosts. However, the molecular mechanisms underlying virulence control are not clearly understood. Here, we found that the opportunistic pathogen Vibrio vulnificus biotype 3, which caused an outbreak of severe wound and intestinal infections associated with farmed tilapia, secretes significantly less virulent multifunctional autoprocessing repeats-in-toxin (MARTX) toxin, which is the most critical virulence factor in other clinical Vibrio strains. The biotype 3 MARTX toxin contains a cysteine protease domain (CPD) evolutionarily retaining a unique autocleavage site and a distinct β-flap region. CPD autoproteolytic activity is attenuated following its autocleavage because of the β-flap region. Staurosporine This β-flap blocks the active site, disabling further autoproteolytic processing and release of the modularly structured effector domains within the toxin. Expression of this altered CPD consequently results in attenuated release of effectors by the toxin and significantly reduces the virulence of V. vulnificus biotype 3 in cells and in mice. Bioinformatic analysis revealed that this virulence mechanism is shared in all biotype 3 strains. Thus, these data provide new insights into the mechanisms by which opportunistic bacteria persist in an environmental reservoir, prolonging the potential to cause outbreaks.Cathepsin H (CTSH) is a type 1 diabetes (T1D) risk gene; large-scale genetic and epidemiological studies found that T1D genetic risk correlates with high CTSH expression, rapid decline of beta-cell function, and early onset T1D. Counterintuitively, transcriptional downregulation of CTSH by proinflammatory cytokines has been shown to promote beta-cell apoptosis. Here, we potentially explain these observed contrasting effects, describing a new mechanism where proinflammatory cytokines and T1D genetic risk variants regulate CTSH transcription via differential DNA methylation. We show that, in human islets, CTSH downregulation by the proinflammatory cytokine cocktail interleukin 1β + tumor necrosis factor α + interferon γ was coupled with DNA hypermethylation in an open chromatin region in CTSH intron 1. A luciferase assay in human embryonic kidney 293 cells revealed that methylation of three key cytosine-phosphate-guanine dinucleotide (CpG) residues in intron 1 was responsible for the reduction of promoter activity. We further found that cytokine-induced intron 1 hypermethylation is caused by lowered Tet1/3 activities, suggesting that attenuated active demethylation lowered CTSH transcription. Importantly, individuals who carry the T1D risk variant showed lower methylation variability at the intron 1 CpG residues, presumably making them less sensitive to cytokines, whereas individuals who carry the protective variant showed higher methylation variability, presumably making them more sensitive to cytokines and implying differential responses to environment between the two patient populations. These findings suggest that genetic and environmental influences on a T1D locus are mediated by differential variability and mean of DNA methylation.The adhesion G protein-coupled receptor CD97 and its ligand complement decay-accelerating factor CD55 are important binding partners in the human immune system. Dysfunction in this binding has been linked to immune disorders such as multiple sclerosis and rheumatoid arthritis, as well as various cancers. Previous literatures have indicated that the CD97 includes 3 to 5 epidermal growth factor (EGF) domains at its N terminus and these EGF domains can bind to the N-terminal short consensus repeat (SCR) domains of CD55. However, the details of this interaction remain elusive, especially why the CD55 binds with the highest affinity to the shortest isoform of CD97 (EGF1,2,5). Herein, we designed a chimeric expression construct with the EGF1,2,5 domains of CD97 and the SCR1-4 domains of CD55 connected by a flexible linker and determined the complex structure by crystallography. Our data reveal that the two proteins adopt an overall antiparallel binding mode involving the SCR1-3 domains of CD55 and all three EGF domains of CD97. Mutagenesis data confirmed the importance of EGF5 in the interaction and explained the binding specificity between CD55 and CD97. The architecture of CD55-CD97 binding mode together with kinetics suggests a force-resisting shearing stretch geometry when forces applied to the C termini of both proteins in the circulating environment. The potential of the CD55-CD97 complex to withstand tensile force may provide a basis for the mechanosensing mechanism for activation of adhesion G protein-coupled receptors.During the twentieth century, French colonial rule in West Africa was marked by the establishment of a homogeneous health organization in the colonies. It was based on the health service of the colonial troops, the hospital service under the general service and other services such as health police, epidemics and hygiene. This health system made it possible to protect the colonizers and indigenous populations from the major endemics of the time, to conduct research on new diseases hitherto unrecognized and to bring “civilization” to the overseas territories. The pharmacist’s missions in the colonial health system were manifold. Our study aims to shed light on the profession of colonial pharmacist in the health history of French West Africa. To do this, it concerned the period between the creation of the Federation of French West Africa (1895) and the end of colonization (1960). Drawing on the available documentation, including archival material and bibliographic sources, this article shows that the colonial pharmacist was already exercising a multidisciplinary profession. He was in fact hospital manager, wholesaler-distributor, pharmacy, biologist, chemist, botanist, teacher, central actor in public health.