• Odgaard Johnsen posted an update 4 hours, 28 minutes ago

    The aim of this study was to examine the association of coffee, caffeinated coffee, decaffeinated coffee and caffeine intake from coffee with cognitive performance in older adults. we used data from the National Health and Nutrition Examination Survey (NHANES) 2011-2014. Coffee and caffeine intake were obtained through two 24-hour dietary recalls. Cognitive performance was evaluated by the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) test, Animal Fluency test and Digit Symbol Substitution Test (DSST). Binary logistic regression and restricted cubic spline models were applied to evaluate the association of coffee and caffeine intake with cognitive performance. A total of 2513 participants aged 60 years or older were included. In the fully adjusted model, compared to those reporting no coffee consumption, those who reported 266.4-495 (g/day) had a multivariate adjusted odd ratio (OR) with 95% confidence interval (CI) of 0.56(0.35-0.89) for DSST test score, compared to those reporting no caffeinated coffee consumption, those who reported ≥384.8 (g/day) had a multivariate-adjusted OR (95% CI) of 0.68(0.48-0.97) for DSST test score, compared to the lowest quartile of caffeine intake from coffee, the multivariate adjusted OR (95% CI) of the quartile (Q) three was 0.62(0.38-0.98) for the CERAD test score. L-shaped associations were apparent for coffee, caffeinated coffee and caffeine from coffee with the DSST test score and CERAD test score. No significant association was observed between decaffeinated coffee and different dimensions of cognitive performance. Our study suggests that coffee, caffeinated coffee and caffeine from coffee were associated with cognitive performance, while decaffeinated coffee was not associated with cognitive performance.Background and Objectives The aim of this study was to explore the association between the cerebral autoregulation (CA) index, the pressure reactivity index (PRx), the patient’s clinical outcome, and the quality of arterial blood pressure (ABP(t)) and intracranial blood pressure (ICP(t)) signals by comparing two filtering methods to derive the PRx. Materials and Methods Data from 60 traumatic brain injury (TBI) patients were collected. Moving averaging and FIR (Finite Impulse Response) filtering were performed on the ABP(t) and ICP(t) signals, and the PRx was estimated from both filtered datasets. Sensitivity, specificity, and receiver-operating characteristic (ROC) curves with the area under the curves (AUCs) were determined using patient outcomes as a reference. The outcome chosen for comparison among the two filtering methods were mortality and survival. Results The FIR filtering approach, compared with clinical outcome, had a sensitivity of 70%, a specificity of 81%, and a level of significance p = 0.001 with an area under the curve (AUC) of 0.78. The moving average filtering method compared with the clinical outcome had a sensitivity of 58%, a specificity of 72%, and a level of significance p = 0.054, with an area under the curve (AUC) of 0.66. Conclusions The FIR (optimal) filtering approach was found to be more sensitive for discriminating between two clinical outcomes, namely intact (survival) and impaired (death) cerebral autoregulation for TBI treatment decision making.Red alga dulse possesses a unique xylan, which is composed of a linear β-(1→3)/β-(1→4)-xylosyl linkage. We previously prepared characteristic xylooligosaccharide (DX3, (β-(1→3)-xylosyl-xylobiose)) from dulse. In this study, we evaluated the prebiotic effect of DX3 on enteric bacterium. Although DX3 was utilized by Bacteroides sp. and Bifidobacterium adolescentis, Bacteroides Ksp. grew slowly as compared with β-(1→4)-xylotriose (X3) but B. adolescentis grew similar to X3. Therefore, we aimed to find the key DX3 hydrolysis enzymes in B. adolescentis. From bioinformatics analysis, two enzymes from the glycoside hydrolase family 43 (BAD0423 subfamily 12 and BAD0428 subfamily 11) were selected and expressed in Escherichia coli. BAD0423 hydrolyzed β-(1→3)-xylosyl linkage in DX3 with the specific activity of 2988 mU/mg producing xylose (X1) and xylobiose (X2), and showed low activity on X2 and X3. BAD0428 showed high activity on X2 and X3 producing X1, and the activity of BAD0428 on DX3 was 1298 mU/mg producing X1. Cooperative hydrolysis of DX3 was found in the combination of BAD0423 and BAD0428 producing X1 as the main product. From enzymatic character, hydrolysis of X3 was completed by one enzyme BAD0428, whereas hydrolysis of DX3 needed more than two enzymes.Structural alterations of pericytes in microvessels are important features of diabetic retinopathy. Although capillary pericytes had been known not to have α-smooth muscle actin (αSMA), a recent study revealed that a specific fixation method enabled the visualization of αSMA along retinal capillaries. In this study, we applied snap-fixation in wild type and streptozotocin-induced diabetic mice to evaluate the differences in vascular smooth muscle cells of the retina and the choroid. Mice eyeballs were fixed in ice-cold methanol to prevent the depolymerization of filamentous actin. Snap-fixated retina showed αSMA expression in higher-order branches along the capillaries as well as the arterioles and venules, which were not detected by paraformaldehyde fixation. In contrast, most choriocapillaris, except those close to the arterioles, were not covered with αSMA-positive perivascular mural cells. Large choroidal vessels were covered with more αSMA-positive cells in the snap-fixated eyes. Diabetes induced less coverage of αSMA-positive perivascular mural cells overall, but they reached higher-order branches of the retinal capillaries, which was prominent in the aged mice. More αSMA-positive pericytes were observed in the choroid of diabetic mice, but the αSMA-positive expression reduced with aging. This study suggests the potential role of smooth muscle cells in the pathogenesis of age-related diabetic retinopathy and choroidopathy.Aspirin, also known as acetylsalicylic acid (ASA), is a commonly used anti-inflammatory drug that has analgesic and antipyretic properties. The side effects are well known, however, knowledge concerning its influence on gastric and intestinal innervation is limited. ANA-12 clinical trial The enteric nervous system (ENS) innervates the whole gastrointestinal tract (GIT) and is comprised of more than one hundred million neurons. The capacity of neurons to adapt to microenvironmental influences, termed as an enteric neuronal plasticity, is an essential adaptive response to various pathological stimuli. Therefore, the goal of the present study was to determine the influence of prolonged ASA supplementation on the immunolocalization of neuronal nitric oxide synthase (nNOS), vasoactive intestinal peptide (VIP) and cocaine- and amphetamine- regulated transcript peptide (CART) in the porcine jejunum. The experiment was performed on 8 Pietrain × Duroc immature gilts. Using routine double-labelling immunofluorescence, we revealed that the ENS nerve cells underwent adaptive changes in response to the induced inflammation, which was manifested by upregulated or downregulated expression of the studied neurotransmitters.