-
Gustafsson Chandler posted an update 4 hours, 23 minutes ago
The sweetpotato whitefly Bemisia tabaci is a polyphagous crop pest distributed worldwide and frequent exposure to many different defensive secondary metabolites in its host plants. To counteract these defensive plant secondary metabolites, B. tabaci elevate their production of detoxification enzymes, including cytochrome P450 monooxygenases. Besides their tolerance to phytotoxin, B. tabaci have quickly developed resistance to various insecticides in the field. However, the relationship between host plant secondary metabolites and insecticide resistance in B. tabaci is not fully understood. In this study, the influence of plant flavonoid ingestion on B. tabaci tolerance to thiamethoxam and flupyradifurone insecticides and its possible mechanism were examined. Eight plant flavonoids were screened to evaluate their effects on B. tabaci adult sensitivity to thiamethoxam and flupyradifurone. Of which rutin, quercetin, kaempferol, myricetin and catechin significantly reduced adult sensitivity to thiamethoxam and flupyradifurone. Application of cytochrome P450 inhibitor piperonyl butoxide significantly increased the mortality of B. tabaci adults treated with thiamethoxam and flupyradifurone. Moreover, flavonoid ingestion predominantly enhanced the activity of cytochrome P450 enzyme in B. click here tabaci adults. Meanwhile, the expression level of three cytochrome P450 genes, CYP6CM1, CYP6CX4 and CYP4C64 were induced by the flavonoids in B. tabaci adults. In conclusion, plant flavonoids enhanced the tolerance to thiamethoxam and flupyradifurone in B. tabaci and cytochrome P450s may contribute the flavonoid adaptation. The reduced sensitivity of thiamethoxam and flupyradifurone in flavonoid-fed B. tabaci adults suggested that previous exposure to the host plant-derived flavonoids is likely to compromise the efficacy of insecticides.Cinnamodial (CDIAL) is a drimane sesquiterpene dialdehyde found in the bark of Malagasy medicinal plants (Cinnamosma species; family Canellaceae). We previously demonstrated that CDIAL was insecticidal, antifeedant, and repellent against Aedes aegypti mosquitoes. The goal of the present study was to generate insights into the insecticidal mode of action for CDIAL, which is presently unknown. We evaluated the effects of CDIAL on the contractility of the ventral diverticulum (crop) isolated from adult female Ae. aegypti. The crop is a food storage organ surrounded by visceral muscle that spontaneously contracts in vitro. We found that CDIAL completely inhibited spontaneous contractions of the crop as well as those stimulated by the agonist 5-hydroxytryptamine. Several derivatives of CDIAL with known insecticidal activity also inhibited crop contractions. Morphometric analyses of crops suggested that CDIAL induced a tetanic paralysis that was dependent on extracellular Ca2+ and inhibited by Gd3+, a non-specific blocker of plasma membrane Ca2+ channels. Screening of numerous pharmacological agents revealed that a Ca2+ ionophore (A23187) was the only compound other than CDIAL to completely inhibit crop contractions via a tetanic paralysis. Taken together, our results suggest that CDIAL induces a tetanic paralysis of the crop by elevating intracellular Ca2+ through the activation of plasma membrane Ca2+ channels, which may explain the insecticidal effects of CDIAL against mosquitoes. Our pharmacological screening experiments also revealed the presence of two regulatory pathways in mosquito crop contractility not previously described an inhibitory glutamatergic pathway and a stimulatory octopaminergic pathway. The latter pathway was also completely inhibited by CDIAL.Long-lasting insecticide treated netting (LLIN) has a number of potential uses for the control of insect pests. Using such netting, stored products may be protected from insects including the khapra beetle (Trogoderma granarium Everts, Coleoptera Dermestidae) a widespread pest of many agricultural commodities. Here we first examined whether brief exposures of larvae to LLIN, for less than 30 min, decreased the chance of eventual adult emergence compared to larvae exposed on untreated netting. Next, we observed the responses of larvae that were either not exposed to any netting, exposed to untreated netting, or exposed to LLIN for 10 min and then placed in a wind tunnel and monitored for movement toward a stimulus. The wind-tunnel assay was performed either with or without a lure containing kairomones and pheromones known to be attractive to larvae of this species. There was little effect of the LLIN on adult emergence of exposed larvae. However, there were interacting effects of untreated netting and LLIN relating to thigmotaxis and anemotaxis. Larvae not exposed to netting showed increased likelihood of walking upwind if the semiochemical lure was provided, as expected. A similar pattern was observed when the untreated netting was used, but the larvae became more likely to remain stationary in the assay after acclimating to the net. When LLIN was used, the larvae became more likely to move and there was a baseline increase in the likelihood of moving upwind. However, upwind walking was no longer related to semiochemical presentation. These observations suggest that particular care should be used in relation to the airflow patterns and semiochemical landscape of the warehouse settings in which LLIN is deployed.Insecticide resistance in pest populations is an increasing problem in both urban and rural settings due to over-application of insecticides and lack of rotation among insecticidal chemical classes. The house fly (Musca domestica L.) is a cosmopolitan pest fly species implicated in the transmission of numerous pathogens. The evolution of insecticide resistance long has been documented in house flies, with resistance reported to all major insecticide classes. House fly resistance to imidacloprid, the most widely used neonicotinoid insecticide available for fly control, has evolved in field populations through both physiological and behavioral mechanisms. Previous studies have characterized and mapped the genetic changes that confer physiological resistance to imidacloprid, but no study have examined the genetics involved in behavioral resistance to imidacloprid to date. In the current study, several approaches were utilized to characterize the genetics and inheritance of behavioral resistance to imidacloprid in the house fly.