-
Field Riise posted an update 5 hours, 45 minutes ago
Theories of orbitofrontal cortex (OFC) function have evolved substantially over the last few decades. There is now a general consensus that the OFC is important for predicting aspects of future events and for using these predictions to guide behavior. Yet the precise content of these predictions and the degree to which OFC contributes to agency contingent upon them has become contentious, with several plausible theories advocating different answers to these questions. In this review we will focus on three of these ideas-the economic value, credit assignment, and cognitive map hypotheses-describing both their successes and failures. We will propose that these failures hint at a more nuanced and perhaps unique role for the OFC, particularly the lateral subdivision, in supporting the proposed functions when an underlying model or map of the causal structures in the environment must be constructed or updated. (PsycInfo Database Record (c) 2021 APA, all rights reserved).Orbital frontal cortex (OFC) research has historically emphasized the function of this associative cortical area within top-down theoretical frameworks. This approach has largely focused on mapping OFC activity onto human-defined psychological or cognitive constructs and has often led to OFC circuitry bearing the weight of entire theoretical frameworks. New techniques and tools developed in the last decade have made it possible to revisit long-standing basic science questions in neuroscience and answer them with increasing sophistication. We can now study and specify the genetic, molecular, cellular, and circuit architecture of a brain region in much greater detail, which allows us to piece together how they contribute to emergent circuit functions. For instance, adopting such systematic and unbiased bottom-up approaches to elucidating the function of the visual system has paved the way to building a greater understanding of the spectrum of its computational capabilities. In the same vein, we argue that OFC research would benefit from a more balanced approach that also places focus on novel bottom-up investigations into OFC’s computational capabilities. Furthermore, we believe that the knowledge gained by employing a more bottom-up approach to investigating OFC function will ultimately allow us to look at OFC’s dysfunction in disease through a more nuanced biological lens. (PsycInfo Database Record (c) 2021 APA, all rights reserved).Value signals in the brain are important for learning, decision-making, and orienting behavior toward relevant goals. Although they can play different roles in behavior and cognition, value representations are often considered to be uniform and static signals. Nonetheless, contextual and mixed representations of value have been widely reported. Here, we review the evidence for heterogeneity in value coding and dynamics in the orbitofrontal cortex. We argue that this diversity plays a key role in the representation of value itself and allows neurons to integrate value with other behaviorally relevant information. We also discuss modeling approaches that can dissociate potential functions of heterogeneous value codes and provide further insight into its importance in behavior and cognition. (PsycInfo Database Record (c) 2021 APA, all rights reserved).Our understanding of orbitofrontal cortex (OFC) function has progressed remarkably over the past decades in part due to theoretical advances in associative and reinforcement learning theories. These theoretical accounts of OFC function have implicated the region in progressively more psychologically refined processes from the value and sensory-specific properties of expected outcomes to the representation and inference over latent state representations in cognitive maps of task space. While these accounts have been successful at modeling many of the effects of causal manipulation of OFC function in both rodents and primates, recent findings suggest that further refinement of our current models are still required. Here, we briefly review how our understanding of OFC function has developed to understand two cardinal deficits following OFC dysfunction Reversal learning and outcome devaluation. We then consider recent findings that OFC dysfunction also significantly affects initial acquisition learning, often assumed to be intact. To account for these findings, we consider a possible role for the OFC in the arbitration and exploration between model-free (MF) and model-based (MB) learning systems, offline updating of MB representations. While the function of the OFC as a whole is still likely to be integral to the formation and use of a cognitive map of task space, these refinements suggest a way in which distinct orbital subregions, such as the rodent lateral OFC, might contribute to this overall function. (PsycInfo Database Record (c) 2021 APA, all rights reserved).Much of traditional neuroeconomics proceeds from the hypothesis that value is reified in the brain, that is, that there are neurons or brain regions whose responses serve the discrete purpose of encoding value. This hypothesis is supported by the finding that the activity of many neurons covaries with subjective value as estimated in specific tasks, and has led to the idea that the primary function of the orbitofrontal cortex is to compute and signal economic value. Here we consider an alternative That economic value, in the cardinal, common-currency sense, is not represented in the brain and used for choice by default. This idea is motivated by consideration of the economic concept of value, which places important epistemic constraints on our ability to identify its neural basis. learn more It is also motivated by the behavioral economics literature, especially work on heuristics, which proposes value-free process models for much if not all of choice. Finally, it is buoyed by recent neural and behavioral findings regarding how animals and humans learn to choose between options. In light of our hypothesis, we critically reevaluate putative neural evidence for the representation of value and explore an alternative direct learning of action policies. We delineate how this alternative can provide a robust account of behavior that concords with existing empirical data. (PsycInfo Database Record (c) 2021 APA, all rights reserved).