-
Schack Monroe posted an update 4 hours, 32 minutes ago
Background Student engagement is essential to quality learning. SCH-442416 molecular weight Regular formative assessment tasks can support positive student engagement attitudes and behaviours towards learning. Objectives This study aimed to evaluate the relationships of regular, recurrent delivery of online quizzes in promoting student engagement and academic performance. Design Concurrent exploratory mixed-method design. Setting A large metropolitan university in Western Sydney. Participants Data from 1037 final-year undergraduate nursing students enrolled in a core theoretical unit related to palliative nursing. Method A series of new Weekly Participation Task (WPT), consisting of multiple online quizzes was embedded into the unit. Administrative data, including data retrieved from the learning analytics, was used for quantitative data analysis. Qualitative data were retrieved from open-ended questions within the institutional Student Feedback on Unit survey. Results Each student’s overall mean number of attempts was 4.6, achieving a mean quiz score of 97.6%. Students with high quiz attempts were more likely to also had high tutorial attendance (AOR 1.42, 95% CI 1.05 to 1.90), achieved maximum quizzes scores (AOR 1.78, 95% CI 1.26 to 2.51), but interestingly, lower grade point average (AOR 1.73, 95% CI 1.28 to 2.35). The WPT received 111 (26%) positive comments in students’ open-ended responses, and all three (behavioural, emotional and cognitive) student engagement dimensions were evident as students’ sources of satisfaction. Conclusions The WPTs are a successful formative assessment task that supports student engagement across all three dimensions, and contributes significantly to reducing student stress and increasing preparedness for and participation in face-to-face tutorial sessions.Studying and understanding the mechanism of inflammation in nucleus pulposus is the key to understand and prevent intervertebral disc degeneration. We propose a model of mechanical sensitive ion channel Piezo1 mediated inflammation of nucleus pulposus cells. Piezo1 can up-regulate the level of interleukin-1β (IL-1β) in nucleus pulposus cells once it is activated. It is suggested that Piezo1 may mediate inflammation by activating Nod-like receptor protein 3 (NLRP3) inflammasome to accelerate the production and maturation of IL-1β. The primary objective of this study was to explore whether Piezo1 activates NLRP3 inflammasome in nucleus pulposus cells. Piezo1 sensitization was induced by mechanical stretch following which we analyzed the priming and assembly of NLRP3 inflammasome and also studied if the downstream Ca2+/NF-κB pathway mediated this activation in nucleus pulposus cells. The expression of Piezo1 and NLRP3 inflammasome increased in a time-dependent manner upon mechanical stretch. Piezo1 activation promoted NLRP3 inflammasome assembly, which was demonstrated by the upregulation of caspase-1 activation and IL-1β production. Transfection of Piezo1-siRNA reversed this process. The inhibition of Ca2+/NF-κB pathway reduced Piezo1-dependent activation of NLRP3 inflammasome. Thus, we propose that activation of NLRP3 inflammasome in nucleus pulposus cells mediated by Piezo1 through the Ca2+/NF-κB pathway is a novel pathogenesis for the progress of intervertebral disc degeneration. As per our knowledge this is the first study which has provided evidence linking Piezo1-mediated inflammation in nucleus pulposus cells with the production of NLRP3 inflammasome.Sepsis induced myocardial dysfunction (SIMD) results in high morbidity and mortality. However, the effective therapeutic strategies for SIMD treatment remain limited. Sirt3 is the main mitochondrial Sirtuin member and is a key modulator of mitochondrial metabolism and function. In this study, we aimed to investigate the effect and mechanism of Sirt3 on SIMD. SIMD was induced by 20 mg/kg Lipopolysaccharides (LPS) injection for 6 h in mice. Sepsis could induce the reduction of cardiac Sirt3 expression and global deficiency of Sirt3 exacerbated cardiac function. Quantitative acetyl-proteomics and cardiac metabolomics analysis revealed that loss of Sirt3 led to hyper-acetylation of critical enzymes within cardiac tricarboxylic acid (TCA) cycle and generation of lactate and NADH, subsequently promotion of cardiac dysfunction after sepsis. Additionally, to evaluate whether Emodin could be utilized as a potential Sirt3 modulator to treat SIMD, male wild type mice (WT mice) or global Sirt3 deficient mice (Sirt3-/- mice) were intraperitoneally injected with 40 mg/kg Emodin for 5 days followed by 20 mg/kg LPS administration for another 6 h and observed that exogenous administration of Emodin could attenuate myocardial dysfunction in septic WT mice. However, septic Sirt3-/- mice can not gain benefit on cardiac performance from Emodin infusion. In conclusion, this study presented the protective role of Sirt3 targeting SIMD, which may provide a potential novel approach to maintain normal cardiac performance after sepsis.The discriminating effects of nanosecond pulsed electric fields (nsPEFs) between chemoresistant tumor cells (CRTCs) and their respective homologous chemosensitive tumor cells (CSTCs) were investigated based on bioimpedance spectroscopy (BIS). The electrical properties of individual untreated cells were determined by fitting the impedance spectra to an equivalent circuit model and then using aided simulations to calculate the nuclear envelope transmembrane potential (nTMP) and electroporation area on the nuclear envelope. Additionally, fluorescence staining assays of cell monolayers after nanopulse stimulation (80 pulses, 200 ns, 3 kV) were conducted to validate the simulation results. The staining results indicated that CRTCs showed a larger ablation area and lower lethal threshold compared to CSTCs after exposure to the same nsPEF energy, which was in accordance with the higher nTMP and larger electroporation area calculated for CRTCs. The increase in the lethal effects of nsPEFs on CRTCs compared to CSTCs mainly resulted from the superposition of the changes in the electrical properties and nuclear size. The work shows that BIS can distinguish CRTCs and CSTCs and the corresponding nsPEF effects, suggesting potential applications for the optimization of novel anti-chemoresistance methods, including nsPEF-treatments.