• Baun Wichmann posted an update 4 hours, 59 minutes ago

    Interocular differences in image blur can cause processing speed differences that lead to dramatic misperceptions of the distance and three-dimensional direction of moving objects. This recently discovered illusion-the reverse Pulfrich effect-is caused by optical conditions induced by monovision, a common correction for presbyopia. Fortunately, anti-Pulfrich monovision corrections, which darken the blurring lens, can eliminate the illusion for many viewing conditions. However, the reverse Pulfrich effect and the efficacy of anti-Pulfrich corrections have been demonstrated only with trial lenses. This situation should be addressed, for clinical and scientific reasons. First, it is important to replicate these effects with contact lenses, the most common method for delivering monovision. Second, trial lenses of different powers, unlike contacts, can cause large magnification differences between the eyes. To confidently attribute the reverse Pulfrich effect to interocular optical blur differences, and to ensure that previously reported effect sizes are reliable, one must control for magnification. Here, in a within-observer study with five separate experiments, we demonstrate that (1) contact lenses and trial lenses induce indistinguishable reverse Pulfrich effects, (2) anti-Pulfrich corrections are equally effective when induced by contact and trial lenses, and (3) magnification differences do not cause or impact the Pulfrich effect.Intra-retinal axon guidance involves a coordinated expression of transcription factors, axon guidance genes, and secretory molecules within the retina. Pax6, the master regulator gene, has a spatio-temporal expression typically restricted till neurogenesis and fate-specification. However, our observation of persistent expression of Pax6 in mature RGCs led us to hypothesize that Pax6 could play a major role in axon guidance after fate specification. Here, we found significant alteration in intra-retinal axon guidance and fasciculation upon knocking out of Pax6 in E15.5 retina. Through unbiased transcriptome profiling between Pax6fl/fl and Pax6-/- retinas, we revealed the mechanistic insight of its role in axon guidance. Our results showed a significant increase in the expression of extracellular matrix molecules and decreased expression of retinal fate specification and neuron projection guidance molecules. Additionally, we found that EphB1 and Sema5B are directly regulated by Pax6 owing to the guidance defects and improper fasciculation of axons. We conclude that Pax6 expression post fate specification of RGCs is necessary for regulating the expression of axon guidance genes and most importantly for maintaining a conducive ECM through which the nascent axons get guided and fasciculate to reach the optic disc.Long-lived dark states, in which an experimentally accessible qubit is not in thermal equilibrium with a surrounding spin bath, are pervasive in solid-state systems. We explain the ubiquity of dark states in a large class of inhomogeneous central spin models using the proximity to integrable lines with exact dark eigenstates. At numerically accessible sizes, dark states persist as eigenstates at large deviations from integrability, and the qubit retains memory of its initial polarization at long times. Although the eigenstates of the system are chaotic, exhibiting exponential sensitivity to small perturbations, they do not satisfy the eigenstate thermalization hypothesis. Rather, we predict long relaxation times that increase exponentially with system size. We propose that this intermediate chaotic but non-ergodic regime characterizes mesoscopic quantum dot and diamond defect systems, as we see no numerical tendency towards conventional thermalization with a finite relaxation time.Epigenetics alternation of non-genetic variation and genome-wide association study proven allelic variants may associate with insulin secretion in type 2 diabetes (T2D) development. We analyzed promoter DNA methylation array to evaluate the associated with increased susceptibility to T2D (30 cases, 10 controls) and found 1,091 gene hypermethylated in promoter regions. We performed the association study of T2D and found 698 single nucleotide polymorphisms in exon and promoter sites by using 2,270 subjects (560 cases, 1,710 controls). A comparison of DNA hypermethylation and gene silencing of mouse T2D results in our T2D patients’ results showed that the 5′-nucleotidase, cytosolic II (NT5C2) and fucosyltransferase 8 (FUT8) genes were strongly associated with increased susceptibility to T2D. DNA hypermethylation in promoter regions reduced NT5C2 gene expression, but not FUT8 in T2D patients. NT5C2 protein expression was decreased in pancreatic β-cells from T2D mice. Transient transfection NT5C2 into RIN-m5F cells down-regulated DNA methyltransferase I (DNMT1) expression and up-regulation of the insulin receptor. LNG-451 in vivo Moreover, NT5C2 knockdown induced in DNMT1 overexpression and insulin receptor inhibition. Taken together, these results showed that NT5C2 epigenetically regulated insulin receptor in patients and mice with T2D, and maybe provide for T2D therapy strategy.Sexual dimorphism is evident in brain structure, size, and function throughout multiple species. Here, we tested whether cerebrospinal fluid entry into the glymphatic system, a network of perivascular fluid transport that clears metabolic waste from the brain, was altered between male and female mice. We analyze glymphatic influx in 244 young reproductive age (2-4 months) C57BL/6 mice. We found no male/female differences in total influx under anesthesia, or across the anterior/posterior axis of the brain. Circadian-dependent changes in glymphatic influx under ketamine/xylazine anesthesia were not altered by sex. This was not true for diurnal rhythms under pentobarbital and avertin, but both still showed daily oscillations independent of biological sex. Finally, although glymphatic influx decreases with age there was no sex difference in total influx or subregion-dependent tracer distribution in 17 middle aged (9-10 months) and 36 old (22-24 months) mice. Overall, in healthy adult C57BL/6 mice we could not detect male/female differences in glymphatic influx.